已知:如圖,?ABCD中,E、F分別是CD、AB上的兩點(diǎn),且CE=AF.求證:BD、EF互相平分.
考點(diǎn):平行四邊形的判定與性質(zhì)
專題:證明題
分析:根據(jù)DE=BF且平行證明四邊形DEBF是平行四邊形,再根據(jù)平行四邊形的性質(zhì):對(duì)角線互相平分得到EF與BD互相平分.
解答:證明:∵四邊形ABCD是平行四邊形,
∴DE∥BF,CD=AB,
又∵CE=AF,
∴DE=BF,
∴四邊形DEBF是平行四邊形.
∴EF與BD互相平分.
點(diǎn)評(píng):本題考查了平行四邊形的判定與性質(zhì),熟練掌握性質(zhì)定理和判定定理是解題的關(guān)鍵.平行四邊形的五種判定方法與平行四邊形的性質(zhì)相呼應(yīng),每種方法都對(duì)應(yīng)著一種性質(zhì),在應(yīng)用時(shí)應(yīng)注意它們的區(qū)別與聯(lián)系.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖1、四邊形OABC是矩形,OA=4,OC=8,將矩形OABC沿直線AC折疊,使點(diǎn)B落在D處,AD交OC于E,
(1)求OE的長;
(2)求過O、D、C三點(diǎn)拋物線的解析式;
(3)如圖2過D做矩形DFGH,F(xiàn)G在x軸上,H在(2)中的拋物線上,求矩形DFGH的面積S是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

關(guān)于x,y的方程組
x-y=3
ax+5y=4
3x+2y=-1
5x+by=1
有相同的解,那么代數(shù)式a-7b的值是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,∠C=90°,AC=12,BC=5,經(jīng)過點(diǎn)C且與邊AB相切的動(dòng)圓與CA、CB分別相交于點(diǎn)P、Q,則PQ長的最小值為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知A(-4,n),B(2,-4)是一次函數(shù)y=kx+b的圖象和反比例函數(shù)y=
m
x
的圖象的兩個(gè)交點(diǎn).
①求反比例函數(shù)和一次函數(shù)的解析式;
②求關(guān)于x的方程kx+b-
m
x
=0
的解(請直接寫出答案);
③求關(guān)于x的不等式kx+b-
m
x
<0
的解集(請直接寫出答案).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知AB∥DC∥EO,∠1=70°,∠2=30°,OG平分∠BOD,則∠BOG=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

化簡:
1
2
x+2(x-
1
3
x2)+(-
3
2
x+
1
3
y2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,∠A=40°,以直角頂點(diǎn)C為旋轉(zhuǎn)中心,將△ABC旋轉(zhuǎn)到△EFC的位置,其中E、F分別是A、B的對(duì)應(yīng)點(diǎn),且點(diǎn)B在斜邊EF上,直角邊EC交AB于點(diǎn)D,則∠ECA=
 
°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

問題:已知線段AB、CD相交于點(diǎn)O,AB=CD.連接AD、BC,請?zhí)砑右粋(gè)條件,使得△AOD≌△COB.
小明的做法及思路:
小明添加了條件:∠DAB=∠BCD.他的思路是:
分兩種情況畫圖①、圖②,在兩幅圖中,
都作直線DA、BC,兩直線交于點(diǎn)E.
由∠DAB=∠BCD,可得∠EAB=∠ECD.
∵AB=CD,∠E=∠E,
∴△EAB≌△ECD.
∴EB=ED,EA=EC.
圖①中ED-EA=EB-EC,即AD=CB.
圖②中EA-ED=EC-EB,即AD=CB.
又∵∠DAB=∠BCD,∠AOD=∠COB,
∴△AOD≌△COB.
數(shù)學(xué)老師的觀點(diǎn):
(1)數(shù)學(xué)老師說:小明添加的條件是錯(cuò)誤的,請你給出解釋.
你的想法:
(2)請你重新添加一個(gè)滿足問題要求的條件,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案