(2010•內(nèi)江)如圖,△ACD和△BCE都是等腰直角三角形,∠ACD=∠BCE=90°,AE交CD于點F,BD分別交CE、AE于點G、H.試猜測線段AE和BD的數(shù)量和位置關系,并說明理由.

【答案】分析:由于條件可知CD=AC,BC=CE,且可求得∠ACE=∠DCB,所以△ACE≌△DCB,即AE=BD,∠CAE=∠CDB;又因為對頂角相∠AFC=∠DFH,所以∠DHF=∠ACD=90°,即AE⊥BD.
解答:解:猜測AE=BD,AE⊥BD;
理由如下:
∵∠ACD=∠BCE=90°,
∴∠ACD+∠DCE=∠BCE+∠DCE,
即∠ACE=∠DCB,
又∵△ACD和△BCE都是等腰直角三角形,
∴AC=CD,CE=CB,(4分)
∵在△ACE與△DCB中,

∴△ACE≌△DCB(SAS),
∴AE=BD,(6分)∠CAE=∠CDB;
∵∠AFC=∠DFH,∠FAC+∠AFC=90°,
∴∠DHF=∠ACD=90°,
∴AE⊥BD.
故線段AE和BD的數(shù)量相等,位置是垂直關系.
點評:此題主要考查全等三角形的判定,涉及到等腰直角三角形的性質及對頂角的性質等知識點.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2010•內(nèi)江)如圖,拋物線y=mx2-2mx-3m(m>0)與x軸交于A、B兩點,與y軸交于C點.
(1)請求出拋物線頂點M的坐標(用含m的代數(shù)式表示),A、B兩點的坐標;
(2)經(jīng)探究可知,△BCM與△ABC的面積比不變,試求出這個比值;
(3)是否存在使△BCM為直角三角形的拋物線?若存在,請求出;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年四川省內(nèi)江市中考數(shù)學試卷(解析版) 題型:解答題

(2010•內(nèi)江)如圖,拋物線y=mx2-2mx-3m(m>0)與x軸交于A、B兩點,與y軸交于C點.
(1)請求出拋物線頂點M的坐標(用含m的代數(shù)式表示),A、B兩點的坐標;
(2)經(jīng)探究可知,△BCM與△ABC的面積比不變,試求出這個比值;
(3)是否存在使△BCM為直角三角形的拋物線?若存在,請求出;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年四川省內(nèi)江市中考數(shù)學試卷(解析版) 題型:解答題

(2010•內(nèi)江)如圖,在Rt△ABC中,∠C=90°,點E在斜邊AB上,以AE為直徑的⊙O與BC相切于點D.
(1)求證:AD平分∠BAC.
(2)若AC=3,AE=4.
①求AD的值;②求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年四川省內(nèi)江市中考數(shù)學試卷(解析版) 題型:填空題

(2010•內(nèi)江)如圖,在△ABC中,AB=AC,點E、F分別在AB和AC上,CE與BF相交于點D,若AE=CF,D為BF的中點,AE:AF的值為   

查看答案和解析>>

科目:初中數(shù)學 來源:2010年四川省內(nèi)江市中考數(shù)學試卷(解析版) 題型:選擇題

(2010•內(nèi)江)如圖,梯形ABCD中,AD∥BC,點E在BC上,AE=BE,點F是CD的中點,且AF⊥AB,若AD=2.7,AF=4,AB=6,則CE的長為( )

A.
B.
C.2.5
D.2.3

查看答案和解析>>

同步練習冊答案