如圖,在平面直角坐標(biāo)系中,圓M經(jīng)過原點O,且與軸、軸分別相交于

兩點.

(1)求出直線AB的函數(shù)解析式;

(2)若有一拋物線的對稱軸平行于軸且經(jīng)過點M,頂點C在⊙M上,開口向下,且經(jīng)過點B,求此拋物線的函數(shù)解析式;

(3)設(shè)(2)中的拋物線交軸于D、E兩點,在拋物線上是否存在點P,使得?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.

解:(1)設(shè)AB的函數(shù)表達(dá)式為

∴直線AB的函數(shù)表達(dá)式為

(2)設(shè)拋物線的對稱軸與⊙M相交于一點,依題意知這一點就是拋物線的頂點C。又設(shè)對稱軸與軸相交于點N,在直角三角形AOB中,

因為⊙M經(jīng)過O、A、B三點,且⊙M的直徑,∴半徑MA=5,∴N為AO的中點AN=NO=4,∴MN=3∴CN=MC-MN=5-3=2,∴C點的坐標(biāo)為(-4,2).

設(shè)所求的拋物線為

∴所求拋物線為

(3)令得D、E兩點的坐標(biāo)為D(-6,0)、E(-2,0),所以DE=4.

又AC=直角三角形的面積

假設(shè)拋物線上存在點

當(dāng)故滿足條件的存在.它們是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,但是點P不與點0、點A重合.連接CP,D點是線段AB上一點,連接PD.
(1)求點B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(橫、縱坐標(biāo)均為整數(shù))中任意選取一個點,其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點坐標(biāo)為(4,0),D點坐標(biāo)為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點,PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發(fā),在梯形OABC的邊上運動,路徑為O→A→B→C,到達(dá)點C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時,請寫出點P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊答案