(2009•濱州)大家知道|5|=|5-0|,它在數(shù)軸上的意義是表示5的點(diǎn)與原點(diǎn)(即表示0的點(diǎn))之間的距離.又如式子|6-3|,它在數(shù)軸上的意義是表示6的點(diǎn)與表示3的點(diǎn)之間的距離.類(lèi)似地,式子|a+5|在數(shù)軸上的意義是   
【答案】分析:兩個(gè)數(shù)的差的絕對(duì)值表示在數(shù)軸上對(duì)應(yīng)的兩個(gè)點(diǎn)之間的距離.
解答:解:根據(jù)題意,得|a+5|=|a-(-5)|,即表示數(shù)a的點(diǎn)與表示-5的點(diǎn)之間的距離.
點(diǎn)評(píng):本題屬于新定義型問(wèn)題,審清題意是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2009年全國(guó)中考數(shù)學(xué)試題匯編《一元二次方程》(04)(解析版) 題型:解答題

(2009•濱州)觀察下列方程及其解的特征:
(1)x+=2的解為x1=x2=1;
(2)x+=的解為x1=2,x2=;
(3)x+=的解為x1=3,x2=;

解答下列問(wèn)題:
(1)請(qǐng)猜想:方程x+=的解為_(kāi)_____;
(2)請(qǐng)猜想:關(guān)于x的方程x+=______的解為x1=a,x2=(a≠0);
(3)下面以解方程x+=為例,驗(yàn)證(1)中猜想結(jié)論的正確性.
解:原方程可化為5x2-26x=-5.
(下面請(qǐng)大家用配方法寫(xiě)出解此方程的詳細(xì)過(guò)程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年中考數(shù)學(xué)考前30天沖刺得分專(zhuān)練4:方程(解析版) 題型:解答題

(2009•濱州)某商品的進(jìn)價(jià)為每件40元.當(dāng)售價(jià)為每件60元時(shí),每星期可賣(mài)出300件,現(xiàn)需降價(jià)處理,且經(jīng)市場(chǎng)調(diào)查:每降價(jià)1元,每星期可多賣(mài)出20件.在確保盈利的前提下,解答下列問(wèn)題:
(1)若設(shè)每件降價(jià)x元、每星期售出商品的利潤(rùn)為y元,請(qǐng)寫(xiě)出y與x的函數(shù)關(guān)系式,并求出自變量x的取值范圍;
(2)當(dāng)降價(jià)多少元時(shí),每星期的利潤(rùn)最大?最大利潤(rùn)是多少?
(3)請(qǐng)畫(huà)出上述函數(shù)的大致圖象.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年浙江省杭州市蕭山區(qū)中考數(shù)學(xué)模擬試卷39(眾安前進(jìn)初中 付建東 孫小芳)(解析版) 題型:解答題

(2009•濱州)觀察下列方程及其解的特征:
(1)x+=2的解為x1=x2=1;
(2)x+=的解為x1=2,x2=;
(3)x+=的解為x1=3,x2=;

解答下列問(wèn)題:
(1)請(qǐng)猜想:方程x+=的解為_(kāi)_____;
(2)請(qǐng)猜想:關(guān)于x的方程x+=______的解為x1=a,x2=(a≠0);
(3)下面以解方程x+=為例,驗(yàn)證(1)中猜想結(jié)論的正確性.
解:原方程可化為5x2-26x=-5.
(下面請(qǐng)大家用配方法寫(xiě)出解此方程的詳細(xì)過(guò)程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年浙江省杭州市蕭山區(qū)中考數(shù)學(xué)模擬試卷15(賀知章學(xué)校 王慧英)(解析版) 題型:解答題

(2009•濱州)觀察下列方程及其解的特征:
(1)x+=2的解為x1=x2=1;
(2)x+=的解為x1=2,x2=;
(3)x+=的解為x1=3,x2=

解答下列問(wèn)題:
(1)請(qǐng)猜想:方程x+=的解為_(kāi)_____;
(2)請(qǐng)猜想:關(guān)于x的方程x+=______的解為x1=a,x2=(a≠0);
(3)下面以解方程x+=為例,驗(yàn)證(1)中猜想結(jié)論的正確性.
解:原方程可化為5x2-26x=-5.
(下面請(qǐng)大家用配方法寫(xiě)出解此方程的詳細(xì)過(guò)程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年山東省濱州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•濱州)某商品的進(jìn)價(jià)為每件40元.當(dāng)售價(jià)為每件60元時(shí),每星期可賣(mài)出300件,現(xiàn)需降價(jià)處理,且經(jīng)市場(chǎng)調(diào)查:每降價(jià)1元,每星期可多賣(mài)出20件.在確保盈利的前提下,解答下列問(wèn)題:
(1)若設(shè)每件降價(jià)x元、每星期售出商品的利潤(rùn)為y元,請(qǐng)寫(xiě)出y與x的函數(shù)關(guān)系式,并求出自變量x的取值范圍;
(2)當(dāng)降價(jià)多少元時(shí),每星期的利潤(rùn)最大?最大利潤(rùn)是多少?
(3)請(qǐng)畫(huà)出上述函數(shù)的大致圖象.

查看答案和解析>>

同步練習(xí)冊(cè)答案