【題目】如圖,拋物線y=﹣x2+bx+c與x軸相交于A、B兩點,與y軸相交于點C,且點B與點C的坐標分別為B(3,0).C(0,3),點M是拋物線的頂點.
(1)求二次函數(shù)的關(guān)系式;
(2)點P為線段MB上一個動點,過點P作PD⊥x軸于點D.若OD=m,△PCD的面積為S,試判斷S有最大值或最小值?并說明理由;
(3)在MB上是否存在點P,使△PCD為直角三角形?如果存在,請直接寫出點P的坐標;如果不存在,請說明理由.
【答案】
(1)
解:把B(3,0),C(0,3)代入y=﹣x2+bx+c得 ,解得 ,
所以拋物線解析式為y=﹣x2+2x+3;
(2)
解:S有最大值.理由如下:
∵y=﹣x2+2x+3=﹣(x﹣1)2+4,
∴M(1,4),
設(shè)直線BM的解析式為y=kx+n,
把B(3,0),M(1,4)代入得 ,解得 ,
∴直線BM的解析式為y=﹣2x+6,
∵OD=m,
∴P(m,﹣2m+6)(1≤m<3),
∴S= m(﹣2m+6)=﹣m2+3m=﹣(m﹣ )2+ ,
∵1≤m<3,
∴當m= 時,S有最大值,最大值為 ;
(3)
解:存在.
∠PDC不可能為90°;
當∠DPC=90°時,則PD=OC=3,即﹣2m+6=3,解得m= ,此時P點坐標為( ,3),
當∠PCD=90°時,則PC2+CD2=PD2,即m2+(﹣2m+3)2+32+m2=(﹣2m+6)2,
整理得m2+6m﹣9=0,解得m1=﹣3﹣3 (舍去),m2=﹣3+3 ,
當m=﹣3+3 時,y=﹣2m+6=6﹣6 +6=12﹣6 ,此時P點坐標為(﹣3+3 ,12﹣6 ),
綜上所述,當P點坐標為( ,3)或(﹣3+3 ,12﹣6 )時,△PCD為直角三角形.
【解析】(1)把B點和C點坐標代入y=﹣x2+bx+c得到關(guān)于b、c的方程組,然后解方程組求出b、c即可得到拋物線解析式;(2)把(1)中的一般式配成頂點式可得到M(1,4),設(shè)直線BM的解析式為y=kx+n,再利用待定系數(shù)法求出直線BM的解析式,則P(m,﹣2m+6)(1≤m<3),于是根據(jù)三角形面積公式得到S=﹣m2+3m,然后根據(jù)二次函數(shù)的性質(zhì)解決問題;(3)討論:∠PDC不可能為90°;當∠DPC=90°時,易得﹣2m+6=3,解方程求出m即可得到此時P點坐標;當∠PCD=90°時,利用勾股定理得到和兩點間的距離公式得到m2+(﹣2m+3)2+32+m2=(﹣2m+6)2
然后解方程求出滿足條件的m的值即可得到此時P點坐標.
科目:初中數(shù)學 來源: 題型:
【題目】補全下列各題解題過程.
如圖,EF∥AD,∠1 = ∠2,∠BAC = 70°,求 ∠AGD 的度數(shù).
解:∵EF∥AD ( 已知 )
∴∠2 = ( )
又∵∠1=∠2 ( )
∴∠1=∠3 ( )
∴AB∥ ( )
∴∠BAC + = 180°( )
∵∠BAC = 70°(已知 )
∴∠AGD = _ .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△OAB如圖所示放置在平面直角坐標系中,直角邊OA與x軸重合,∠OAB=90°,OA=4,AB=2,把Rt△OAB繞點O逆時針旋轉(zhuǎn)90°,點B旋轉(zhuǎn)到點C的位置,一條拋物線正好經(jīng)過點O,C,A三點.
(1)求該拋物線的解析式;
(2)在x軸上方的拋物線上有一動點P,過點P作x軸的平行線交拋物線于點M,分別過點P,點M作x軸的垂線,交x軸于E,F(xiàn)兩點,問:四邊形PEFM的周長是否有最大值?如果有,請求出最值,并寫出解答過程;如果沒有,請說明理由.
(3)如果x軸上有一動點H,在拋物線上是否存在點N,使O(原點)、C、H、N四點構(gòu)成以O(shè)C為一邊的平行四邊形?若存在,求出N點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,點E,F(xiàn)分別是BC,DC上的一個動點,以EF為對稱軸折疊△CEF,使點C的對稱點G落在AD上,若AB=3,BC=5,則CF的取值范圍為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校八年級一班20名女生某次體育測試的成績統(tǒng)計如下:
成績(分) | 60 | 70 | 80 | 90 | 100 |
人數(shù)(人) | 1 | 5 | x | y | 2 |
(1)如果這20名女生體育成績的平均分數(shù)是82分,求x、y的值;
(2)在(1)的條件下,設(shè)20名學生測試成績的眾數(shù)是a,中位數(shù)是b,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了豐富同學們的課余生活,某學校舉行“親近大自然”戶外活動,現(xiàn)隨機抽取了部分學生進行主題為“你最想去的景點是?”的問卷調(diào)查,要求學生只能從“A(植物園),B(花卉園),C(濕地公園),D(森林公園)”四個景點中選擇一項,根據(jù)調(diào)查結(jié)果,繪制了如下兩幅不完整的統(tǒng)計圖.
請解答下列問題:
(1)本次調(diào)查的樣本容量是;
(2)補全條形統(tǒng)計圖;
(3)若該學校共有3600名學生,試估計該校最想去濕地公園的學生人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】服裝店老板用45 000元購進一批羽絨服,由于深受顧客喜愛,很快售完.老板又用49 500元購進相同數(shù)量的該款羽絨服,但每件進價比第一批多了9元.根據(jù)題中信息,解答下列問題:
(Ⅰ)第一批羽絨服每件進價是多少元?
(Ⅱ)老板以每件120元的價格銷售該款式羽絨服,當?shù)诙鸾q服售出時,出現(xiàn)了滯銷,于是決定降價促銷,若要使第二批的銷售利潤不低于14 000元,則剩余的羽絨服每件售價至少要多少元?(利潤售價-進價)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】推理填空:如圖AB∥CD,∠1=∠2,∠3=∠4,試說明AD∥BE.
解:∵AB∥CD(已知)
∴∠4=∠1+_____(_______)
∵∠3=∠4(已知)
∴∠3=∠1+_____(_______)
∵∠1=∠2(已知)
∴∠1+∠CAF=∠2+∠CAF(_______)
即∠_____=∠_____
∴∠3=∠_____(_______)
∴AD∥BE(_______).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知直線l1:y=x+n-2與直線l2:y=mx+n相交于點P(1,2).
(1)求m,n的值;
(2)請結(jié)合圖象直接寫出不等式mx+n>x+n-2的解集.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com