已知:如圖,△ABC中,AB=AC,以AB為直徑的⊙O交BC于點P,PD⊥AC于點D.
(1)求證:PD是⊙O的切線;
(2)若∠CAB=120°,AB=2,求BC的值.
分析:(1)要證明PD是⊙O的切線只要證明∠DPO=90°即可; (2)連接AP,根據(jù)已知可求得BP的長,從而可求得BC的長. 解答:證明:(1)∵AB=AC, ∴∠C=∠B, 又∵OP=OB,∠OPB=∠B, ∴∠C=∠OPB, ∴OP∥AD; 又∵PD⊥AC于D, ∴∠ADP=90°, ∴∠DPO=90°, ∴PD是⊙O的切線. 解:(2)連接AP, ∵AB是直徑, ∴∠APB=90°; ∵AB=AC=2,∠CAB=120°, ∴∠BAP=60°, ∴BP=, ∴BC=2. 點評:本題考查的是切線的判定,要證某線是圓的切線,已知此線過圓上某點,連接圓心和這點(即為半徑),再證垂直即可. |
考點:切線的判定. |
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com