如圖1,平面之間坐標(biāo)系中,等腰直角三角形的直角邊BC在x軸正半軸上滑動(dòng),點(diǎn)C的坐標(biāo)為(t,0),直角邊AC=4,經(jīng)過(guò)O,C兩點(diǎn)做拋物線(a為常數(shù),a>0),該拋物線與斜邊AB交于點(diǎn)E,直線OA:y2=kx(k為常數(shù),k>0)

(1)填空:用含t的代數(shù)式表示點(diǎn)A的坐標(biāo)及k的值:A     ,k=     ;
(2)隨著三角板的滑動(dòng),當(dāng)a=時(shí):
①請(qǐng)你驗(yàn)證:拋物線的頂點(diǎn)在函數(shù)的圖象上;
②當(dāng)三角板滑至點(diǎn)E為AB的中點(diǎn)時(shí),求t的值;
(3)直線OA與拋物線的另一個(gè)交點(diǎn)為點(diǎn)D,當(dāng)t≤x≤t+4,|y2﹣y1|的值隨x的增大而減小,當(dāng)x≥t+4時(shí),|y2﹣y1|的值隨x的增大而增大,求a與t的關(guān)系式及t的取值范圍.

解:(1)∵點(diǎn)C的坐標(biāo)為(t,0),直角邊AC=4,∴點(diǎn)A的坐標(biāo)是(t,4)。
∵直線OA:y2=kx(k為常數(shù),k>0),∴4=kt,則(k>0)。
(2)①當(dāng)a=時(shí),,其頂點(diǎn)坐標(biāo)為。
對(duì)于,當(dāng)x=時(shí),
∴點(diǎn)在拋物線上。
∴當(dāng)a=時(shí),拋物線的頂點(diǎn)在函數(shù)的圖象上。
②如圖1,過(guò)點(diǎn)E作EK⊥x軸于點(diǎn)K,

∵AC⊥x軸,∴AC∥EK。
∵點(diǎn)E是線段AB的中點(diǎn),∴K為BC的中點(diǎn)。
∴EK是△ACB的中位線。
∴EK=AC=2,CK=BC=2!郋(t+2,2)。
∵點(diǎn)E在拋物線上,
,解得t=2。
∴當(dāng)三角板滑至點(diǎn)E為AB的中點(diǎn)時(shí),t=2。
(3)如圖2,由,

解得,或x=0(不合題意,舍去)。
∴點(diǎn)D的橫坐標(biāo)是。
當(dāng)時(shí),|y2﹣y1|=0,由題意得,即

∴當(dāng)時(shí),取得最大值。
又當(dāng)時(shí),取得最小值0,
∴當(dāng)時(shí),的值隨x的增大而減小,當(dāng)時(shí),的值隨x的增大而增大。
由題意,得,將代入得,解得。
綜上所述,a與t的關(guān)系式為,t的取值范圍為。

解析試題分析:(1)根據(jù)題意易得點(diǎn)A的橫坐標(biāo)與點(diǎn)C的相同,點(diǎn)A的縱坐標(biāo)即是線段AC的長(zhǎng)度;把點(diǎn)A的坐標(biāo)代入直線OA的解析式來(lái)求k的值:
(2)①求得拋物線y1的頂點(diǎn)坐標(biāo),然后把該坐標(biāo)代入函數(shù),若該點(diǎn)滿足函數(shù)解析式,即表示該頂點(diǎn)在函數(shù)圖象上;反之,該頂點(diǎn)不在函數(shù)圖象上。
②如圖1,過(guò)點(diǎn)E作EK⊥x軸于點(diǎn)K.則EK是△ACB的中位線,所以根據(jù)三角形中位線定理易求點(diǎn)E的坐標(biāo),把點(diǎn)E的坐標(biāo)代入拋物線即可求得t=2。
(3)如圖2,根據(jù)拋物線與直線相交可以求得點(diǎn)D橫坐標(biāo)是,則,由此可以求得a與t的關(guān)系式。由求得取得最大值時(shí)的x值,同時(shí)由時(shí),取得最小值0,得出當(dāng)時(shí),的值隨x的增大而減小,當(dāng)時(shí),的值隨x的增大而增大。從而由題意,得,結(jié)合,求出t的取值范圍。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知拋物線y=ax2+bx+3(a≠0)經(jīng)過(guò)A(3,0),B(4,1)兩點(diǎn),且與y軸交于點(diǎn)C.

(1)求拋物線y=ax2+bx+3(a≠0)的函數(shù)關(guān)系式及點(diǎn)C的坐標(biāo);
(2)如圖(1),連接AB,在題(1)中的拋物線上是否存在點(diǎn)P,使△PAB是以AB為直角邊的直角三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)如圖(2),連接AC,E為線段AC上任意一點(diǎn)(不與A、C重合)經(jīng)過(guò)A、E、O三點(diǎn)的圓交直線AB于點(diǎn)F,當(dāng)△OEF的面積取得最小值時(shí),求點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

一汽車租賃公司擁有某種型號(hào)的汽車100輛.公司在經(jīng)營(yíng)中發(fā)現(xiàn)每輛車的月租金x(元)與每月租出的車輛數(shù)(y)有如下關(guān)系:

x
3000
3200
3500
4000
y
100
96
90
80
(1)觀察表格,用所學(xué)過(guò)的一次函數(shù)、反比例函數(shù)或二次函數(shù)的有關(guān)知識(shí)求出每月租出的車輛數(shù)y(輛)與每輛車的月租金x(元)之間的關(guān)系式.
(2)已知租出的車每輛每月需要維護(hù)費(fèi)150元,未租出的車每輛每月需要維護(hù)費(fèi)50元.用含x(x≥3000)的代數(shù)式填表:
租出的車輛數(shù)
       
未租出的車輛數(shù)
       
租出每輛車的月收益
       
所有未租出的車輛每月的維護(hù)費(fèi)
       
(3)若你是該公司的經(jīng)理,你會(huì)將每輛車的月租金定為多少元,才能使公司獲得最大月收益?請(qǐng)求出公司的最大月收益是多少元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

在平面直角坐標(biāo)系中,一個(gè)二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)A(1,0)、B(3,0)兩點(diǎn).

(1)寫出這個(gè)二次函數(shù)的對(duì)稱軸;
(2)設(shè)這個(gè)二次函數(shù)的頂點(diǎn)為D,與y軸交于點(diǎn)C,它的對(duì)稱軸與x軸交于點(diǎn)E,連接AD、DE和DB,當(dāng)△AOC與△DEB相似時(shí),求這個(gè)二次函數(shù)的表達(dá)式。
[提示:如果一個(gè)二次函數(shù)的圖象與x軸的交點(diǎn)為A,那么它的表達(dá)式可表示為:]

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知以E(3,0)為圓心,以5為半徑的⊙E與x軸交于A,B兩點(diǎn),與y軸交于C點(diǎn),拋物線經(jīng)過(guò)A,B,C三點(diǎn),頂點(diǎn)為F.

(1)求A,B,C三點(diǎn)的坐標(biāo);
(2)求拋物線的解析式及頂點(diǎn)F的坐標(biāo);
(3)已知M為拋物線上一動(dòng)點(diǎn)(不與C點(diǎn)重合),試探究:
①使得以A,B,M為頂點(diǎn)的三角形面積與△ABC的面積相等,求所有符合條件的點(diǎn)M的坐標(biāo);
②若探究①中的M點(diǎn)位于第四象限,連接M點(diǎn)與拋物線頂點(diǎn)F,試判斷直線MF與⊙E的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,△ABC中,AB=BC,AC=8,tanA=k,P為AC邊上一動(dòng)點(diǎn),設(shè)PC=x,作PE∥AB交BC于E,PF∥BC交AB于F.

(1)證明:△PCE是等腰三角形;
(2)EM、FN、BH分別是△PEC、△AFP、△ABC的高,用含x和k的代數(shù)式表示EM、FN,并探究EM、FN、BH之間的數(shù)量關(guān)系;
(3)當(dāng)k=4時(shí),求四邊形PEBF的面積S與x的函數(shù)關(guān)系式.x為何值時(shí),S有最大值?并求出S的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知拋物線與x軸相交于A、B兩點(diǎn),與y軸相交于點(diǎn)C,若已知A點(diǎn)的坐標(biāo)為A(﹣2,0).

(1)求拋物線的解析式及它的對(duì)稱軸方程;
(2)求點(diǎn)C的坐標(biāo),連接AC、BC并求線段BC所在直線的解析式;
(3)試判斷△AOC與△COB是否相似?并說(shuō)明理由;
(4)在拋物線的對(duì)稱軸上是否存在點(diǎn)Q,使△ACQ為等腰三角形?若不存在,求出符合條件的Q點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

(2013年浙江義烏10分)為迎接中國(guó)森博會(huì),某商家計(jì)劃從廠家采購(gòu)A,B兩種產(chǎn)品共20件,產(chǎn)品的采購(gòu)單價(jià)(元/件)是采購(gòu)數(shù)量(件)的一次函數(shù).下表提供了部分采購(gòu)數(shù)據(jù).

采購(gòu)數(shù)量(件)
1
2

A產(chǎn)品單價(jià)(元/件)
1480
1460

B產(chǎn)品單價(jià)(元/件)
1290
1280

(1)設(shè)A產(chǎn)品的采購(gòu)數(shù)量為x(件),采購(gòu)單價(jià)為y1(元/件),求y1與x的關(guān)系式;
(2)經(jīng)商家與廠家協(xié)商,采購(gòu)A產(chǎn)品的數(shù)量不少于B產(chǎn)品數(shù)量的,且A產(chǎn)品采購(gòu)單價(jià)不低于1200元.求該商家共有幾種進(jìn)貨方案;
(3)該商家分別以1760元/件和1700元/件的銷售單價(jià)售出A,B兩種產(chǎn)品,且全部售完.在(2)的條件下,求采購(gòu)A種產(chǎn)品多少件時(shí)總利潤(rùn)最大,并求最大利潤(rùn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

某市對(duì)火車站進(jìn)行了大規(guī)模的改建,改建后的火車站除原有的普通售票窗口外,新增了自動(dòng)打印車票的無(wú)人售票窗口.某日,從早8點(diǎn)開始到上午11點(diǎn),每個(gè)普通售票窗口售出的車票數(shù)y1(張)與售票時(shí)間x(小時(shí))的正比例函數(shù)關(guān)系滿足圖①中的圖象,每個(gè)無(wú)人售票窗口售出的車票數(shù)y2(張)與售票時(shí)間x(小時(shí))的函數(shù)關(guān)系滿足圖②中的圖象.
(1)圖②中圖象的前半段(含端點(diǎn))是以原點(diǎn)為頂點(diǎn)的拋物線的一部分,根據(jù)圖中所給數(shù)據(jù)確定拋物線的表達(dá)式為   ,其中自變量x的取值范圍是   ;
(2)若當(dāng)天共開放5個(gè)無(wú)人售票窗口,截至上午9點(diǎn),兩種窗口共售出的車票數(shù)不少于1450張,則至少需要開放多少個(gè)普通售票窗口?
(3)上午10點(diǎn)時(shí),每個(gè)普通售票窗口與每個(gè)無(wú)人售票窗口售出的車票數(shù)恰好相同,試確定圖②中圖象的后半段一次函數(shù)的表達(dá)式.

查看答案和解析>>

同步練習(xí)冊(cè)答案