【題目】如圖1,CE平分∠ACD,AE平分∠BAC,∠EAC+∠ACE=90°.
(1)請判斷AB與CD的位置關(guān)系并說明理由;
(2)如圖2,在(1)的結(jié)論下,當∠E=90°保持不變,移動直角頂點E,使∠MCE=∠ECD,當直角頂點E點移動時,問∠BAE與∠MCD是否存在確定的數(shù)量關(guān)系?
【答案】(1)AB∥CD.理由見解析;(2)∠BAE與∠MCD存在確定的數(shù)量關(guān)系:∠BAE+∠MCD=90°.
【解析】
(1)先根據(jù)CE平分∠ACD,AE平分∠BAC得出∠BAC=2∠EAC,∠ACD=2∠ACE,再由∠EAC+∠ACE=90°可知∠BAC+∠ACD=180°,故可得出結(jié)論;
(2)過E作EF∥AB,根據(jù)平行線的性質(zhì)可知EF∥AB∥CD,∠BAE=∠AEF,∠FEC=∠DCE,故∠BAE+∠ECD=90°,再由∠MCE=∠ECD即可得出結(jié)論;
(1)AB∥CD.理由如下:
∵CE平分∠ACD,AE平分∠BAC,
∴∠BAC=2∠EAC,∠ACD=2∠ACE
∵∠EAC+∠ACE=90°,
∴∠BAC+∠ACD=180°,
∴AB∥CD;
(2)∠BAE與∠MCD存在確定的數(shù)量關(guān)系:∠BAE+ ∠MCD=90°.
理由如下:
過E作EF∥AB,
∵AB∥CD,
∴EF∥AB∥CD,
∴∠BAE=∠AEF,∠FEC=∠DCE
∵∠E=90°,
∴∠BAE+∠ECD=90°
∵∠MCE=∠ECD,
∴∠BAE+ ∠MCD=90°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,花叢中有一路燈桿AB. 在燈光下,小明在D點處的影長DE=3米,沿BD方向行走到達G點,DG=5米,這時小明的影長GH=5米. 如果小明的身高為1.7米,求路燈桿AB的高度(精確到0.1米).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一張三角形紙片如圖甲,其中將紙片沿過點B的直線折疊,使點C落到AB邊上的E點處,折痕為如圖乙再將紙片沿過點E的直線折疊,點A恰好與點D重合,折痕為如圖丙原三角形紙片ABC中,的大小為______
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一次函數(shù)與反比例函數(shù)的圖象交于,兩點.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2) 請根據(jù)圖象直接寫出時的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1是一商場的推拉門,已知門的寬度米,且兩扇門的大小相同(即),將左邊的門繞門軸向里面旋轉(zhuǎn),將右邊的門繞門軸向外面旋轉(zhuǎn),其示意圖如圖2,求此時與之間的距離(結(jié)果保留一位小數(shù)).(參考數(shù)據(jù):,,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正方形中與交于點,點在線段上,作直線交直線于,過作于,設(shè)直線交于.
(1)如圖,當在線段上時,求證:;
(2)如圖2,當在線段上,連接,當時,求證:;
(3)在圖3,當在線段上,連接,當時,求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知a是最大的負整數(shù),b、c滿足,且a,b,c分別是點A,B,C在數(shù)軸上對應(yīng)的數(shù).
(1)求a,b,c的值,并在數(shù)軸上標出點A,B,C;
(2)若動點P從C出發(fā)沿數(shù)軸正方向運動,點P的速度是每秒2個單位長度,運動幾秒后,點P到達B點?
(3)在數(shù)軸上找一點M,使點M到A,B,C三點的距離之和等于13,請直接寫出所有點M對應(yīng)的數(shù).(不必說明理由)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在△ABC中,BA=BC,BD是△ABC的中線,△ABC的角平分線AE交BD于點F,過點C作AB的平行線交AE的延長線于點G
(1)如圖1,若∠ABC=60°,求證:AF=EG;
(2)如圖2,若∠ABC=90°,求證:AF=EG;
(3)在(2)的條件下如圖3,過點A作∠CAH=∠FAC,過點B作BM∥AC交AG于點M,點N在AH上,連接MN、BN,若∠BMN+∠EAH=90°,,求BN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,點D是BC邊的中點,BD=2,tanB=.
(1)求AD和AB的長;
(2)求sin∠BAD的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com