【題目】已知,與互為余角,與互為補(bǔ)角,平分,平分,

1)如圖,當(dāng)時(shí),求的度數(shù);

2)在(1)的條件下,請(qǐng)你補(bǔ)全圖形,并求的度數(shù);

3)當(dāng)為大于的銳角,且有重合部分時(shí),請(qǐng)求出的度數(shù).(寫出說理過程,用含的代數(shù)式表示)

【答案】(1)27.5°;(2) 135°10°;(3) .

【解析】

(1)根據(jù)題目已知條件平分,得出∠COM=MOA,因即可求出.

(2)AOB和∠BOD互補(bǔ),分兩種情況討論,第一種情況是∠AOB和∠BOD沒有重合部分時(shí),第二種情況是∠AOB和∠BOD有重合部分時(shí),再根據(jù)題目已知條件求解.

(3)根據(jù)題目要求畫出符合題目的圖,在根據(jù)題目給出的已知條件求解.

解:(1)AOB=35°∵平分

∴∠COM=MOA=

(2)當(dāng)∠AOB和∠BOD沒有重合部分時(shí)

如圖所示∵∠AOB=35°,∠AOB與∠BOD互補(bǔ)

∴∠AOB+BOD=180°

平分

∴∠BON=NOD=

∴∠MON=NOB+BOA+AOM=

當(dāng)∠AOB和∠BOD有重合部分時(shí)

(1)知∠MOA=27.5°,∠AOB=35°

AOB與∠BOD互補(bǔ)

∴∠AOB+BOD=180°

BOD=180°-35°=145°

同理可得:∠NOB=72.5°

∠MON=72.5°-27.5°-35°=10°

∴∠MON=135°10°

(3)如圖所示

因?yàn)?/span>∠AOB∠AOC互余,

∴∠AOC=

平分

COM=MOA=

∵∠OB與∠BOD互補(bǔ)

∴∠AOB+BOD=180°平分

∴∠CON=∠NOD=

∴∠NAO=

∴∠MON=

同理可得∠MON=

同理可得∠MON=

∴∠MON=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,平面直角坐標(biāo)系xOy中,B0,1),OBOCOA,AC分別在x軸的正負(fù)半軸上.過點(diǎn)C的直線繞點(diǎn)C旋轉(zhuǎn),交y軸于點(diǎn)D,交線段AB于點(diǎn)E

1)求∠OAB的度數(shù)及直線AB的解析式;

2)若△OCD與△BDE的面積相等,求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A從原點(diǎn)O出發(fā)沿?cái)?shù)軸向左運(yùn)動(dòng),同時(shí),點(diǎn)B也從原點(diǎn)出發(fā)沿?cái)?shù)軸向右運(yùn)動(dòng),5秒后,兩點(diǎn)相距15個(gè)單位長(zhǎng)度,已知點(diǎn)B的速度是點(diǎn)A的速度的2倍(速度單位:?jiǎn)挝婚L(zhǎng)度/秒)

1)求出點(diǎn)A、點(diǎn)B運(yùn)動(dòng)的速度;并在數(shù)軸上標(biāo)出A、B兩點(diǎn)從原點(diǎn)O出發(fā)運(yùn)動(dòng)5秒時(shí)的位置.

2)若A、B兩點(diǎn)從(1)中的位置開始,仍以原來的速度同時(shí)沿?cái)?shù)軸向左運(yùn)動(dòng),

①再過幾秒,AB兩點(diǎn)重合?

②再過幾秒,可以讓A、B、O三點(diǎn)中一點(diǎn)是另外兩點(diǎn)所成線段的中點(diǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探索發(fā)現(xiàn):

……

根據(jù)你發(fā)現(xiàn)的規(guī)律,回答下列問題:

1   ,   

2)利用你發(fā)現(xiàn)的規(guī)律計(jì)算:

3)利用規(guī)律解方程:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】李叔叔在“中央山水”買了一套經(jīng)濟(jì)適用房,他準(zhǔn)備將地面鋪上地磚,這套住宅的建筑平面(由四個(gè)長(zhǎng)方形組成)如圖所示(圖中長(zhǎng)度單位:米),請(qǐng)解答下問題:

1)用式子表示這所住宅的總面積;

2)若鋪1平方米地磚平均費(fèi)用120元,求當(dāng)x=6時(shí),這套住宅鋪地磚總費(fèi)用為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=3,BC=4.Rt△MPN中,∠MPN=90°,點(diǎn)P在AC上,PM交AB于點(diǎn)E,PN交BC于點(diǎn)F,當(dāng)PE=2PF時(shí),AP=________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線x軸交AB兩點(diǎn)(A點(diǎn)在B點(diǎn)左側(cè)),直線與拋物線交于AC兩點(diǎn),其中C點(diǎn)的橫坐標(biāo)為2.

(1)求A、B 兩點(diǎn)的坐標(biāo)及直線AC的函數(shù)表達(dá)式;

(2)P是線段AC上的一個(gè)動(dòng)點(diǎn),過P點(diǎn)作y軸的平行線交拋物線于E點(diǎn),求線段PE長(zhǎng)度的最大值;

(3)點(diǎn)G拋物線上的動(dòng)點(diǎn),在x軸上是否存在點(diǎn)F,使AC、FG這樣的四個(gè)點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?如果存在,求出所有滿足條件的F點(diǎn)坐標(biāo);如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,BCOA,BC3,OA6,AB3

1)直接寫出點(diǎn)B的坐標(biāo);

2)已知D、E2,4)分別為線段OCOB上的點(diǎn),OD5,直線DEx軸于點(diǎn)F,求直線DE的解析式;

3)在(2)的條件下,點(diǎn)M是直線DE上的一點(diǎn),在x軸上方是否存在另一個(gè)點(diǎn)N,使以O、DM、N為頂點(diǎn)的四邊形是菱形?若存在,請(qǐng)直接寫出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】央視熱播節(jié)目朗讀者激發(fā)了學(xué)生的閱讀興趣.某校為滿足學(xué)生的閱讀需求,欲購(gòu)進(jìn)一批學(xué)生喜歡的圖書.學(xué)校組織學(xué)生會(huì)成隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查,被調(diào)查學(xué)生須從文史類、社科類、小說類、生活類中選擇自己喜歡的一類.根據(jù)調(diào)查結(jié)果繪制了統(tǒng)計(jì)圖(未完成).請(qǐng)根據(jù)圖中信息,解答下列問題:

(1)此次共調(diào)查了 名學(xué)生;

(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

(3)圖2中小說類所在扇形的圓心角為 度;

(4)若該學(xué)校共有學(xué)生2500人,估計(jì)該校喜歡社科類書籍的學(xué)生人數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案