【題目】如圖,在中,,E為CA延長線上一點,D為AB上一點,F為外一點且連接DF,BF.
(1)當(dāng)的度數(shù)是多少時,四邊形ADFE為菱形,請說明理由:
(2)當(dāng)AB= 時,四邊形ACBF為正方形(請直接寫出)
【答案】(1)當(dāng)時,四邊形ADFE為菱形,理由詳見解析; (2).
【解析】
(1)當(dāng)∠CAB=60°時,四邊形ADFE為菱形;由平行線的性質(zhì)可證∠AFE=∠DAF,∠AEF=∠CAB=60°,可得△AEF,△AFD都是等邊三角形,可得AE=AF=AD=EF=FD,即可得結(jié)論.
(2)由正方形的性質(zhì)可求解.
(1)當(dāng)∠CAB=60°時,四邊形ADFE為菱形,
理由如下:
∵AE=AF=AD
∴∠AEF=∠AFE,
∵EF∥AB
∴∠AFE=∠DAF,∠AEF=∠CAB=60°
∴∠FAD=60°
∴△AEF,△AFD都是等邊三角形
∴AE=AF=AD=EF=FD
∴四邊形ADFE為菱形
(2)若四邊形ACBF為正方形
∴AC=BC=1,∠ACB=90°
∴AB=
∴當(dāng)AB=時,四邊形ACBF為正方形
故答案為:
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了迎接“六一”國際兒童節(jié),某童裝品牌專賣店準(zhǔn)備購進(jìn)甲、乙兩種童裝,這兩種童裝的進(jìn)價和售價如下表:
價格 | 甲 | 乙 |
進(jìn)價(元/件) | m | m+20 |
售價(元/件) | 150 | 160 |
如果用5000元購進(jìn)甲種童裝的數(shù)量與用6000元購進(jìn)乙種童裝的數(shù)量相同.
(1)求m的值;
(2)要使購進(jìn)的甲、乙兩種童裝共200件的總利潤(利潤=售價﹣進(jìn)價)不少于8980元,且甲種童裝少于100件,問該專賣店有哪幾種進(jìn)貨方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是邊長為6的等邊三角形,P是AC邊上一動點,由A向C運動(與A、C不重合),Q是CB延長線上一動點,與點P同時以相同的速度由B向CB延長線方向運動(Q不與B重合),過P作PE⊥AB于E,連接PQ交AB于D.
(1)若AE=1時,求AP的長;
(2)當(dāng)∠BQD=30°時,求AP的長;
(3)在運動過程中線段ED的長是否發(fā)生變化?如果不變,求出線段ED的長;如果發(fā)生變化,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】A,B兩城相距600千米,甲、乙兩車同時從A城出發(fā)駛向B城,甲車到達(dá)B城后立即返回.如圖是它們離A城的距離y(千米)與行駛時間 x(小時)之間的函數(shù)圖象.
(1)求甲車行駛過程中y與x之間的函數(shù)解析式,并寫出自變量x的取值范圍;
(2)當(dāng)它們行駛7了小時時,兩車相遇,求乙車速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2013年四川廣安8分)某商場籌集資金12.8萬元,一次性購進(jìn)空調(diào)、彩電共30臺.根據(jù)市場需要,這些空調(diào)、彩電可以全部銷售,全部銷售后利潤不少于1.5萬元,其中空調(diào)、彩電的進(jìn)價和售價見表格.
空調(diào) | 彩電 | |
進(jìn)價(元/臺) | 5400 | 3500 |
售價(元/臺) | 6100 | 3900 |
設(shè)商場計劃購進(jìn)空調(diào)x臺,空調(diào)和彩電全部銷售后商場獲得的利潤為y元.
(1)試寫出y與x的函數(shù)關(guān)系式;
(2)商場有哪幾種進(jìn)貨方案可供選擇?
(3)選擇哪種進(jìn)貨方案,商場獲利最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰直角三角形ABC中,D是AB的中點,E,F分別是AC,BC.上的點(點E不與端點A,C重合),且連接EF并取EF的中點O,連接DO并延長至點G,使,連接DE,DF,GE,GF
(1)求證:四邊形EDFG是正方形;
(2)直接寫出當(dāng)點E在什么位置時,四邊形EDFG的面積最小?最小值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】保護(hù)環(huán)境,讓我們從垃圾分類做起.某區(qū)環(huán)保部門為了提高宣傳實效,抽樣調(diào)查了部分居民小區(qū)一段時間內(nèi)生活垃圾(其中A、B、C、D分別表示可回收物、廚余垃圾、有害垃圾和其它垃圾)的分類情況,進(jìn)行整理后,繪制了如下兩幅尚不完整的統(tǒng)計圖.試根據(jù)圖表解答下列問題:
(1)請將圖①中的條形統(tǒng)計圖補(bǔ)充完整;
(2)在圖②中的扇形統(tǒng)計圖中,“D”部分所對應(yīng)的圓心角等于 度;
(3)在抽樣數(shù)據(jù)中,產(chǎn)生的有害垃圾共有多少噸?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(概念學(xué)習(xí))
規(guī)定:求若干個相同的有理數(shù)(均不等于0)的除法運算叫做除方,如2÷2÷2等.類比有理數(shù)的乘方,我們把2÷2÷2記作2③,讀作“2的圈3次方”,一般地,把(a≠0)記作a,讀作“a的圈n次方”.
(初步探究)
(1)直接寫出計算結(jié)果:2③=_____,(﹣)⑤=_____.
(2)關(guān)于除方,下列說法準(zhǔn)確的選項有_________(只需填入正確的序號)
①.任何非零數(shù)的圈2次方都等于1; ②.對于任何正整數(shù)n,1=1;
③.3④=4③ ④.負(fù)數(shù)的圈奇數(shù)次方結(jié)果是負(fù)數(shù),負(fù)數(shù)的圈偶數(shù)次方結(jié)果是正數(shù).
(深入思考)我們知道,有理數(shù)的減法運算可以轉(zhuǎn)化為加法運算,除法運算可以轉(zhuǎn)化為乘法運算,有理數(shù)的除方運算如何轉(zhuǎn)化為乘方運算呢?
例如: 2④=2÷2÷2÷2
=2×××
=(__)2 (冪的形式)
試一試:將下列除方運算直接寫成冪的形式.
5⑥=_____;(﹣)⑩=_____;a=_____(a≠0).
算一算:④÷23+(﹣8)×2③.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一列有理數(shù)﹣1,2,﹣3,4,﹣5,6,……,按如圖所示有序排列.
如圖所示有序排列.如:“峰1”中峰頂C的位置是有理數(shù)4,那么,
(1)“峰6”中峰頂C的位置是有理數(shù)_____;
(2)2008應(yīng)排在A、B、C、D、E中_____的位置.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com