【題目】數(shù)學(xué)活動(dòng)課上,小聰同學(xué)擺弄著自己剛購(gòu)買的一套三角板,將兩塊直角三角板的直角頂點(diǎn)C疊放在一起,然后轉(zhuǎn)動(dòng)三角板,在轉(zhuǎn)動(dòng)過程中,請(qǐng)解決以下問題:
(1)如圖(1):當(dāng)∠DCE=30°時(shí),∠ACB+∠DCE= ,若∠DCE為任意銳角時(shí),你還能求出∠ACB與∠DCE的數(shù)量關(guān)系嗎?若能,請(qǐng)求出;若不能,請(qǐng)說明理由.
(2)當(dāng)轉(zhuǎn)動(dòng)到圖(2)情況時(shí),∠ACB與∠DCE有怎樣的數(shù)量關(guān)系?請(qǐng)說明理由.
【答案】(1)∠ACB+∠DCE=180°(2)∠ACB+∠DCE=180°
【解析】
(1)當(dāng)∠DCE=30°時(shí),利用互余計(jì)算出∠BCD,然后可得到∠ACB+∠DCE的度數(shù);若∠DCE為任意銳角時(shí),利用∠ACE+∠DCE=90°,∠BCD+∠DCE=90°,然后計(jì)算出∠ACB+∠DCE=180°;
(2)利用周角定義得到∠ACD+∠ECB+∠ACB+∠DCE=360°,所以∠ECD+∠ACB=360°﹣(∠ACD+∠ECB)=180°.
(1)∠ACB+∠DCE=180°;若∠DCE為任意銳角時(shí),∠ACB+∠DCE=180°.理由如下:
∵∠ACE+∠DCE=90°,∠BCD+∠DCE=90°,∴∠ACB+∠DCE=∠ACE+∠DCE+∠BCD+∠DCE=90°+90°=180°;
(2)∠ACB+∠DCE=180°.理由如下:
∵∠ACD=90°=∠ECB,∠ACD+∠ECB+∠ACB+∠DCE=360°,∴∠ECD+∠ACB=360°﹣(∠ACD+∠ECB)=360°﹣180°=180°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,大樹AB與大數(shù)CD相距13m,小華從點(diǎn)B沿BC走向點(diǎn)C,行走一段時(shí)間后他到達(dá)點(diǎn)E,此時(shí)他仰望兩棵大樹的頂點(diǎn)A和D,兩條視線的夾角正好為90°,且EA=ED.已知大樹AB的高為5m,小華行走的速度為1m/s,小華行走到點(diǎn)E的時(shí)間是( )
A. 13s B. 8s C. 6s D. 5s
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列推理過程,將空白部分補(bǔ)充完整.
(1)如圖1,∠ABC=∠A1B1C1,BD,B1D1分別是∠ABC,∠A1B1C1的角平分線,對(duì)∠DBC=∠D1B1C1進(jìn)行說理.
理由:因?yàn)锽D,B1D1分別是∠ABC,∠A1B1C1的角平分線
所以∠DBC= ,∠D1B1C1= (角平分線的定義)
又因?yàn)?/span>∠ABC=∠A1B1C1
所以∠ABC=∠A1B1C1
所以∠DBC=∠D1B1C1( )
(2)如圖2,EF∥AD,∠1=∠2,∠B=40°,求∠CDG的度數(shù).
因?yàn)镋F∥AD,
所以∠2= ( )
又因?yàn)?/span>∠1=∠2 (已知)
所以∠1= (等量代換)
所以AB∥GD( )
所以∠B= ( )
因?yàn)?/span>∠B=40°(已知)
所以∠CDG= (等量代換)
(3)下面是“積的乘方的法則“的推導(dǎo)過程,在括號(hào)里寫出每一步的依據(jù).
因?yàn)椋?/span>ab)n=( )
=( )
=anbn( )
所以(ab)n=anbn.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△AOB是直角三角形,∠AOB=90°,OB=2OA,點(diǎn)A在反比例函數(shù)y= 的圖象上.若點(diǎn)B在反比例函數(shù)y= 的圖象上,則k的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知線段AB和CD的公共部分BD=AB= CD,線段AB、CD的中點(diǎn)E,F之間距離是10cm,求AB,CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別與BC,AC交于點(diǎn)D,E,過點(diǎn)D作⊙O的切線DF,交AC于點(diǎn)F.
(1)求證:DF⊥AC;
(2)若⊙O的半徑為4,∠CDF=22.5°,求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD的對(duì)角線AC、BD的長(zhǎng)分別為10厘米、6厘米,且AC與BD互相垂直,順次連接四邊形ABCD四邊的中點(diǎn)E、F、G、H得四邊形EFGH,則四邊形EFGH的面積為_____平方厘米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在數(shù)軸上有三個(gè)點(diǎn)A、B、C,完成下列問題:
(1)將點(diǎn)B向右移動(dòng)六個(gè)單位長(zhǎng)度到點(diǎn)D,在數(shù)軸上表示出點(diǎn)D.
(2)在數(shù)軸上找到點(diǎn)E,使點(diǎn)E為BA的中點(diǎn)(E到A、C兩點(diǎn)的距離相等),井在數(shù)軸上標(biāo)出點(diǎn)E表示的數(shù),求出CE的長(zhǎng).
(3)O為原點(diǎn),取OC的中點(diǎn)M,分OC分為兩段,記為第一次操作:取這兩段OM、CM的中點(diǎn)分別為了N1、N2,將OC分為4段,記為第二次操作,再取這兩段的中點(diǎn)將OC分為8段,記為第三次操作,第六次操作后,OC之間共有多少個(gè)點(diǎn)?求出這些點(diǎn)所表示的數(shù)的和.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于有理數(shù)a、b,定義運(yùn)算:ab=a×b-a-b+1.
(1)計(jì)算5(-2)與(-2)5的值,并猜想ab與ba的大小關(guān)系;
(2)求(-3) [4(-2)]的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com