已知,在平行四邊形ABCD中,BC=2AB,M為AD的中點(diǎn),CE⊥AB于E.
求證:∠DME=3∠AEM.

證明:設(shè)BC中點(diǎn)為N,連MN交CE于P,再連MC,
則AM=BN,MD=NC,
又∵BC=2AB,
∴四邊形ABNM、四邊形MNCD均是菱形,
∴MN∥AB,
∴∠AEM=∠EMN,
∵CE⊥AB,
∴MN⊥CE,
又∵AM=MD,MN∥AB.
∴P點(diǎn)為EC的中點(diǎn),
∴MP垂直平分EC,
∴∠EMN=∠NMC,
又∵四邊形MNCD是菱形,
∴∠NMC=∠CMD,
∴∠EMD=3∠EMN=3∠AEM.
分析:設(shè)BC中點(diǎn)為N,連MN交CE于P,再連MC,根據(jù)等角代換可得出∠AEM=∠EMN,再根據(jù)題意判斷出△MEC是等腰三角形,從而得出∠EMN=∠NMC,結(jié)合四邊形MNCD是菱形可證得結(jié)論.
點(diǎn)評(píng):本題考查了平行四邊形的性質(zhì),綜合性較強(qiáng),難度較大,解答本題的關(guān)鍵是正確作出輔助線,分別利用等腰三角形及菱形的性質(zhì)解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知,在平行四邊形OABC中,OA=5,AB=4,∠OCA=90°,動(dòng)點(diǎn)P從O點(diǎn)出發(fā)沿射線OA精英家教網(wǎng)方向以每秒2個(gè)單位的速度移動(dòng),同時(shí)動(dòng)點(diǎn)Q從A點(diǎn)出發(fā)沿射線AB方向以每秒1個(gè)單位的速度移動(dòng).設(shè)移動(dòng)的時(shí)間為t秒.
(1)求直線AC的解析式;  
(2)試求出當(dāng)t為何值時(shí),△OAC與△PAQ相似.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:在平行四邊形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,M、N、P、Q分別是OA、OB、OC、OD的中點(diǎn).
求證:四邊形MNPQ是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:在平行四邊形ABCD中,設(shè)
AB
=
a
,
AD
=
b
,那么
CA
=
 
(用向量
a
、
b
的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知,在平行四邊形OABC中,OA=5,AB=4,∠OCA=90°,動(dòng)點(diǎn)P從O點(diǎn)出發(fā)沿射線OA方向精英家教網(wǎng)以每秒2個(gè)單位的速度移動(dòng),同時(shí)動(dòng)點(diǎn)Q從A點(diǎn)出發(fā)沿射線AB方向以每秒1個(gè)單位的速度移動(dòng).設(shè)移動(dòng)的時(shí)間為t秒.
(1)求直線AC的解析式;
(2)試求出當(dāng)t為何值時(shí),△OAC與△PAQ相似?
(3)若⊙P的半徑為
8
5
,⊙Q的半徑為
3
2
;當(dāng)⊙P與對(duì)角線AC相切時(shí),判斷⊙Q與直線AC、BC的位置關(guān)系,并求出Q點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知:在平行四邊形ABCD中,AB=4cm,AD=7cm,∠ABC的平分線交AD于點(diǎn)E,交CD的延長(zhǎng)線于點(diǎn)F,求DF的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案