年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如果成立,那么直角坐標(biāo)系中點(diǎn)P(m,n)的位置在( )
A、第一象限 B、第二象限 C、第三象限 D、第四象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,在平面直角坐標(biāo)系中,有一張矩形紙片OABC,已知O(0,0),A(4,0),C(0,3),點(diǎn)P是OA邊上的動(dòng)點(diǎn)(與點(diǎn)O、A不重合),現(xiàn)將PAB沿PB翻折,得到PDB;再在OC邊上選取適當(dāng)?shù)狞c(diǎn)E,將POE沿PE翻折,得到PFE,并使直線PD、PF重合。
(1)設(shè)P(x,0),E(0,y),求y關(guān)于x的函數(shù)關(guān)系式及自變量x的取值范圍,并求出y的最大值;
(2)如圖,若翻折后點(diǎn)D落在BC邊上,求過(guò)點(diǎn)P、B、E的拋物線的函數(shù)關(guān)系式;
|
|
②
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
已知Rt△ABC,∠B=90°,直線EF分別于兩直角邊AB、AC交于E、F兩點(diǎn),且EF//AC。P是斜邊AC的中點(diǎn),連接PE、PF,且已知AB=,BC=。
(1) 如圖1,當(dāng)E、F均為兩直角邊中點(diǎn)時(shí),求證:四邊形EPFB是矩形,并求出此時(shí)EF的長(zhǎng)。
(2) 如圖2,設(shè)EF的長(zhǎng)度為x(x>0),當(dāng)sin∠EPF=(∠EPF為銳角)時(shí),用含x的代數(shù)式表示EP的長(zhǎng)度。
(3) 記△PEF 的面積為S,則當(dāng)EP為多少時(shí),S的值最大,并求出該最大值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
已知點(diǎn)P是邊長(zhǎng)為5的正方形ABCD內(nèi)一點(diǎn),且AP=2 , AF⊥AP,垂足是點(diǎn)A, 若在射線AF上找一點(diǎn)M,使以點(diǎn)A, M, D為頂點(diǎn)的三角形與△ABP相似,則AM為( )
A. B. C. 或 D. 或
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,雙曲線(x>0)經(jīng)過(guò)四邊形OABC的頂點(diǎn)A、C,∠ABC=90°,OC平分OA與軸正半軸的夾角,AB∥軸,將△ABC沿AC翻折后得到△AB'C,B'點(diǎn)落在OA上,則四邊形OABC的面積是( ).
A. B. C.2 D.
|
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com