【題目】探究與發(fā)現(xiàn):
如圖1所示的圖形,像我們常見的學習用品--圓規(guī).我們不妨把這種圖形叫做“規(guī)形圖”,那么在這一個簡單的圖形中,到底隱藏了哪些數(shù)學知識呢?請解決以下問題:
(1)觀察“規(guī)形圖”,試探究∠BPC與∠A、∠B、∠C之間的關系,并說明理由;
(2)請你直接利用以上結論,解決以下問題:
①如圖2:已知△ABC,BP平分∠ABC,CP平分∠ACB,直接寫出∠BPC與∠A之間存在的等量關系為: .
遷移運用:如圖3:在△ABC中,∠A=80°,點O是∠ABC,∠ACB角平分線的交點,點P是∠BOC,∠OCB角平分線的交點,若∠OPC=100°,則∠ACB的度數(shù) .
②如圖4:若D點是△ABC內任意一點,BP平分∠ABD,CP平分∠ACD.直接寫出∠BDC、∠BPC、∠A之間存在的等量關系為 .
【答案】(1)∠BPC=∠A+∠B+∠C,理由見解析;(2)①∠BPC=90°+∠A,60°;②2∠BPC=∠BDC+∠A.
【解析】
(1)首先連接AP并延長至點F,然后根據(jù)外角的性質,即可判斷出∠BPC=∠A+∠B+∠C;
(2)①利用角平分線的定義,三角形的內角和定理證明即可;
遷移運用:設∠BCP=∠PCO=x,∠BOP=∠COP=y,由∠P=100°,推出x+y=80°,推出2x+2y=160°,推出∠OBC=180°-160°=20°,可得∠ABC=40°,由此即可解決問題;
②根據(jù)角平分線的定義和四邊形的內角和即可得到結論.
(1)如圖,連接AP并延長至點F,
根據(jù)外角的性質,可得
∠BPF=∠BAP+∠B,∠CPF=∠C+∠CAP,
又∵∠BPC=∠BPF+∠CPF,∠BAC=∠BAP+∠CAP,
∴∠BPC=∠A+∠B+∠C;
(2)①結論:∠BPC=90°+∠A.
理由:∵BP平分∠ABC,CP平分∠ACB,
∴∠PBC=∠ABC,∠PCB=∠ACB,
∴∠BPC=180°-(∠ABC+∠ACB)=180°-(180°-∠A)=90°+∠A;
遷移運用:設∠BCP=∠PCO=x,∠BOP=∠COP=y,
∵∠P=100°,
∴x+y=80°,
∴2x+2y=160°,
∴∠OBC=180°-160°=20°,
∵BO平分∠ABC,
∴∠ABC=40°,
∵∠A=80°,
∴∠ACB=180°-40°-80°=60°;
故答案為:∠BPC=90°+∠A,60°;
②∵BP平分∠ABD,CP平分∠ACD,
∴∠PBD=∠ABP,∠PCD=∠ACP,
四邊形BPDC中,∠P+∠ABD+∠ACD+360°-∠D=360°,
∴∠ABD+∠ACD=∠D-∠P,
在四邊形ABPC中,∠A+∠ABD+∠ACD+360°-∠P=360°,
∴∠A+∠D-∠P-∠P=0,
∴2∠BPC=∠BDC+∠A.
故答案為:2∠BPC=∠BDC+∠A.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC的頂點坐標分別為A(1,3)、B(4,2)、C(2,1).
(1)作出與△ABC關于x軸對稱的△A 1B1C1,并寫出點A1的坐標;
(2)以原點O 為位似中心,在原點的另一側畫出△A2B2C2,使,并寫出點A2的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:在Rt△ABC中,∠BAC=90°,D是BC的中點,E是AD的中點.過點A做AF∥BC交BE的延長線于點F.
(1)求證:△AEF≌△DEB;
(2)證明四邊形ADCF是菱形;若AC=4,AB=5,求菱形ADCF的面積.
(3)當△ABC滿足什么條件時,四邊形ADCF是正方形,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明購買A,B兩種商品,每次購買同一種商品的單價相同,具體信息如下表:
次數(shù) | 購買數(shù)量(件 | 購買總費用(元 | |
A | B | ||
第一次 | 2 | 1 | 55 |
第二次 | 1 | 3 | 65 |
根據(jù)以上信息解答下列問題:
(1)求A,B兩種商品的單價;
(2)若第三次購買這兩種商品共12件,且A種商品的數(shù)量不少于B種商品數(shù)量的2倍,請設計出最省錢的購買方案,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,△ABC的三個頂點坐標分別為A(1,4),B(4,2),C(3,5)(每個小方格的邊長均為1個單位長度).
(1)請畫出△ABC關于x軸對稱的△A1B1C1;
(2)將△ABC繞點O逆時針旋轉90°,畫出旋轉后得到的△A2B2C2,并求出點B旋轉到點B2所經(jīng)過的路徑長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知∠1+∠2﹦180°,∠3﹦∠B,則DE∥BC,下面是王華同學的推導過程﹐請你幫他在括號內填上推導依據(jù)或內容.
證明:
∵∠1+∠2﹦180(已知),
∠1﹦∠4 (_________________),
∴∠2﹢_____﹦180°.
∴EH∥AB(___________________________________).
∴∠B﹦∠EHC(________________________________).
∵∠3﹦∠B(已知)
∴ ∠3﹦∠EHC(____________________).
∴ DE∥BC(__________________________________).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我市某中學舉行“中國夢校園好聲音”歌手大賽,高、初中部根據(jù)初賽成績,各選出5名選手組成初中代表隊和高中代表隊參加學校決賽。兩個隊各選出的5名選手的決賽成績如圖所示.
(1)根據(jù)圖示填寫下表;
(2)結合兩隊成績的平均數(shù)和中位數(shù),分析哪個隊的決賽成績較好;
(3)計算兩隊決賽成績的方差并判斷哪一個代表隊選手成績較為穩(wěn)定.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,AB是00的直徑,BC是⊙O的切線,連接AC,交⊙0于D,E為弧AD上一點,連接AE,BE交AC于點F且,(1)求證CB=CF;(2)若點E到弦AD的距離為3,cos C=,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在8×8的正方形網(wǎng)格中,有一個Rt△AOB,點O是直角頂點,點O、A、B分別在網(wǎng)格中小正方形的頂點上,請按照下面要求在所給的網(wǎng)格中畫圖.
(1)在圖1中,將△AOB先向右平移3個單位,再向上平移2個單位,得到△A1O1B1,畫出平移后的△A1O1B1;(其中點A、O、B的對應點分別為點A1,O1,B1)
(2)在圖2中,△AOB與△A2O2B2是關于點P對稱的圖形,畫出△A2O2B2,連接BA2,并直接寫出tan∠A2BO的值.(其中A,O,B的對應點分別為點A2,O2,B2)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com