【題目】已知兩地各需220噸和280噸化肥,A市有化肥200噸,B市有化肥300噸,剛好可以全部運往 兩地,如果從A市運往兩地運價分別為20元/噸和25元/噸,從B市運往兩地運價分別為15元/噸和22元/噸。
(1)如果A市運往C地的化肥為100噸,則總運費共多少元?
(2)設總運費為元,如果設A市運往C地的化肥噸,用含代數式來表示;
(3)按照(2)問的要求,猜想為多少時,總的運費最少,是多少?
【答案】(1)10260;(2)y=2x+10060;(3) 當x=0時,總的運費最少,總運費為10060元
【解析】
(1)根據從A市運往C、D兩地運價分別為20元/噸和25元/噸,從B市運往C、D兩地運價分別為15元/噸和22元/噸進行解答即可;
(2)根據題意列出代數式解答即可;
(3)利用函數增減性求出即可.
解:(1)A市運往C地的化肥為100噸,總運費共10020+12015+10025+18022=10260元;
(2)總運費y=20x+(220-x)15+(200-x)25+(300-220-x)22=2x+10060
(3)因為2>0,
所以當x=0時,總的運費最少,總運費為10060元.
科目:初中數學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,對角線BD=12cm,AC=16cm,AC,BD相交于點O,若E,F是AC上兩動點,分別從A,C兩點以相同的速度向C、A運動,其速度為0.5cm/s.
(1)當E與F不重合時,四邊形DEBF是平行四邊形嗎?說明理由;
(2)點 E,F在AC上運動過程中,以D、E、B、F為頂點的四邊形是否可能為矩形?如能,求出此時的運動時間t的值;如不能,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點O是等邊△ABC內一點,∠AOB=110°,∠BOC=α.將△BOC繞點C按順時針方向旋轉60°得△ADC,連接OD.
(1)試說明:△COD是等邊三角形;
(2)當α=150°時,試判斷△AOD的形狀,并說明理由;
(3)探究:當∠BOC為多少度時,△AOD是等腰三角形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在東西向的馬路上有一個巡崗亭A,巡崗員甲從崗亭A出發(fā)以13km/h速度勻速來回巡邏,如果規(guī)定向東巡邏為正,向西巡邏為負,巡邏情況記錄如下:(單位:千米)
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | 第六次 | 第七次 |
4 | -5 | 3 | -4 | -3 | 6 | -1 |
(1)求第六次結束時甲的位置(在崗亭A的東邊還是西邊?距離多遠?)
(2)在第幾次結束時距崗亭A最遠?距離A多遠?
(3)巡邏過程中配置無線對講機,并一直與留守在崗亭A的乙進行通話,問在甲巡邏過程中,甲與乙的保持通話時長共多少小時?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,是根據九年級某班50名同學一周的鍛煉情況繪制的條形統計圖,下面關于該班50名同學一周鍛煉時間的說法錯誤的是( )
A. 中位數是6.5 B. 平均數高于眾數
C. 極差為3 D. 平均每周鍛煉超過6小時的人占總數的一半
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩車分別從A、B兩地同時出發(fā)勻速相向而行,大樓C位于AB之間,甲與乙相遇在AC中點處,然后兩車立即掉頭,以原速原路返回,直到各自回到出發(fā)點.設甲、乙兩車距大樓C的距離之和為y(千米),甲車離開A地的時間為t(小時),y與t的函數圖象所示,則第21小時時,甲乙兩車之間的距離為千米.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】有一科技小組進行了機器人行走性能試驗,在試驗場地有A、B、C三點順次在同一筆直的賽道上,A、B兩點之間的距離是90米,甲、乙兩機器人分別從A、B兩點同時同向出發(fā)到終點C,乙機器人始終以50米分的速度行走,乙行走9分鐘到達C點.設兩機器人出發(fā)時間為t(分鐘),當t=3分鐘時,甲追上乙.
請解答下面問題:
(1)B、C兩點之間的距離是 米.
(2)求甲機器人前3分鐘的速度為多少米/分?
(3)若前4分鐘甲機器人的速度保持不變,在4≤t≤6分鐘時,甲的速度變?yōu)榕c乙相同,求兩機器人前6分鐘內出發(fā)多長時間相距28米?
(4)若6分鐘后甲機器人的速度又恢復為原來出發(fā)時的速度,直接寫出當t>6時,甲、乙兩機器人之間的距離S.(用含t的代數式表示).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com