如圖,在△ABC和△ABD中,AD和BC交于點(diǎn)O,∠1=∠2,請(qǐng)你添加一個(gè)重要條件(不再添加其它線段,不再標(biāo)注或使用其它字母),使AC=BD,并給出證明.你添加的條件是______.

【答案】分析:添加的條件是∠C=∠D,根據(jù)AAS推出△ABC≌△DAB,根據(jù)全等三角形的性質(zhì)推出即可.
解答:添加的條件是∠C=∠D,
證明:∵在△ABC和△DAB中
,
∴△ABC≌△DAB(AAS),
∴AC=BD,
故答案為:∠C=∠D
點(diǎn)評(píng):本題考查了全等三角形的性質(zhì)和判定,注意:全等三角形的對(duì)應(yīng)邊相等,全等三角形的判定定理有SAS,ASA,AAS,SSS,答案不唯一.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

22、已知,如圖,在△ABC和△EDB中,∠ACB=∠EBD=90°,點(diǎn)E在BC上,DE⊥AB交AB于F,且AB=ED.求證:DB=BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC和△DEF中,AC∥DE,∠EFD與∠B互補(bǔ),DE=mAC(m>1).試探索線段EF與AB的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC和△ABD中,∠C=∠D=90°,若利用“AAS”證明△ABC≌△ABD,則需要加條件
∠CAB=∠DAB或∠CBA=∠DBA
∠CAB=∠DAB或∠CBA=∠DBA
,若利用“HL”證明△ABC≌△ABD,則需要加條件
BD=BC或AD=AC
BD=BC或AD=AC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC和△ABD中,AC⊥BC,AD⊥BD,E是AB邊上的中點(diǎn).則DE
=
=
CE.(填>、=、<)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC和△DEF中,∠A=∠D,∠C=∠F,AC=DF,請(qǐng)說(shuō)明AE=BD的理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案