【Ⅰ】如圖,在△ABC中,AB=AC=13厘米,BC=10厘米,AD⊥BC于點(diǎn)D,動點(diǎn)P從點(diǎn)A出發(fā)以每秒1厘米的速度在線段AD上向終點(diǎn)D運(yùn)動.設(shè)動點(diǎn)運(yùn)動時(shí)間為t秒.
(1)求AD的長;
(2)當(dāng)△PDC的面積為15平方厘米時(shí),求t的值;
(3)動點(diǎn)M從點(diǎn)C出發(fā)以每秒2厘米的速度在射線CB上運(yùn)動.點(diǎn)M與點(diǎn)P同時(shí)出發(fā),且當(dāng)點(diǎn)P運(yùn)動到終點(diǎn)D時(shí),點(diǎn)M也停止運(yùn)動.是否存在t,使得S△PMD=數(shù)學(xué)公式S△ABC?若存在,請求出t的值;若不存在,請說明理由.

【Ⅱ】我校工會于“三•八”婦女節(jié)期間組織女職工到國家級風(fēng)景區(qū)“文成銅鈴山”觀光旅游.下面是領(lǐng)隊(duì)與旅行社導(dǎo)游收費(fèi)標(biāo)準(zhǔn)的一段對話:
【領(lǐng)隊(duì)】組團(tuán)去“文成銅鈴山”旅游每人收費(fèi)是多少?
【導(dǎo)游】如果人數(shù)不超過30人,人均旅游費(fèi)用為360元.
【領(lǐng)隊(duì)】超過30人怎樣優(yōu)惠呢?
【導(dǎo)游】如果超過30人,每增加1人,人均旅游費(fèi)用降低5元,但人均旅游費(fèi)用不得低于300元.
我校按旅行社的收費(fèi)標(biāo)準(zhǔn)組團(tuán)瀏覽“文成銅鈴山”結(jié)束后,共支付給旅行社12400元.設(shè)我校這次參加旅游的共有x人.
請你根據(jù)上述信息,回答下列問題:
(1)我校參加旅游的人數(shù)x的取值范圍是______;
(2)我校參加旅游的人每人實(shí)際應(yīng)收費(fèi)______元(用含x的代數(shù)式表示);
(3)求我校這次到“文成銅鈴山”觀光旅游的女職工共有多少人?

【Ⅰ】解:(1)∵AB=AC,AD⊥BC,
∴BD=BC=5cm,
且∠ADB=90°.

即AD的長為12cm;

(2)AP=t,PD=12-t,
又由S△PDC=15,得
解得,t=6.

(3)假設(shè)存在t,
使得S△PMD=S△ABC
①若點(diǎn)M在線段CD上,
時(shí),PD=12-t,DM=5-2t,
由S△PMD=S△ABC
2t2-29t+50=0
解,得t1=12.5(舍去),t2=2.
②若點(diǎn)M在射線DB上,即
由S△PMD=S△ABC
2t2-29t+70=0
解,得

綜上,存在t的值為2或
使得S△PMD=S△ABC

【Ⅱ】
解:(1)我校參加旅游的人數(shù)x的取值范圍是x>30;

(2)我校參加旅游的人每人實(shí)際應(yīng)收費(fèi)[360-5(x-30)]元(用含x的代數(shù)式表示);

(3)依題意,得[360-5•(x-30)]•x=12400,
化簡、整理,得x2-102x+2480=0.
解,得x1=40,x2=62.
當(dāng)x1=40時(shí),360-5•(x-30)=360-5•(40-30)=310>300,符合題意.
當(dāng)x2=62時(shí),360-5•(x-30)=360-5•(62-30)=200<300,不符合題意,應(yīng)舍去.
∴x1=40.
答:我校這次參加旅游的共有40人.
分析:【Ⅰ】(1)根據(jù)勾股定理求得AD的長;
(2)表示出PD=12-t,S△PDC=15,得,求得t的值即可;
(3)假設(shè)存在t,使得S△PMD=S△ABC.分兩種情況進(jìn)行討論:①若點(diǎn)M在線段CD上,②若點(diǎn)M在射線DB上,從而求得t的值;
【Ⅱ】(1)先根據(jù)旅游的費(fèi)用,求得我校參加旅游的人數(shù)x的取值范圍;
(2)有x人參加旅游,每人的費(fèi)用降低5(x-30)元,人均費(fèi)用[360-5(x-30)]元,
(3)找到等量關(guān)系列出方程,人均費(fèi)用×總?cè)藬?shù)=12400,求出這次到“文成銅鈴山”觀光旅游的女職工共有的人數(shù).
點(diǎn)評:本題是兩個(gè)題目,難度不大,考查了勾股定理、動點(diǎn)問題和不等式的實(shí)際應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(本大題有兩題,請同學(xué)們選擇你喜歡且拿手一題解答)
【Ⅰ】如圖,在△ABC中,AB=AC=13厘米,BC=10厘米,AD⊥BC于點(diǎn)D,動點(diǎn)P從點(diǎn)A出發(fā)以每秒1厘米的速度在線段AD上向終點(diǎn)D運(yùn)動.設(shè)動點(diǎn)運(yùn)動時(shí)間為t秒.
(1)求AD的長;
(2)當(dāng)△PDC的面積為15平方厘米時(shí),求t的值;
(3)動點(diǎn)M從點(diǎn)C出發(fā)以每秒2厘米的速度在射線CB上運(yùn)動.點(diǎn)M與點(diǎn)P同時(shí)出發(fā),且當(dāng)點(diǎn)P運(yùn)動到終點(diǎn)D時(shí),點(diǎn)M也停止運(yùn)動.是否存在t,使得S△PMD=
112
S△ABC?若存在,請求出t的值;若不存在,請說明理由.
精英家教網(wǎng)
【Ⅱ】我校工會于“三•八”婦女節(jié)期間組織女職工到國家級風(fēng)景區(qū)“文成銅鈴山”觀光旅游.下面是領(lǐng)隊(duì)與旅行社導(dǎo)游收費(fèi)標(biāo)準(zhǔn)的一段對話:
【領(lǐng)隊(duì)】組團(tuán)去“文成銅鈴山”旅游每人收費(fèi)是多少?
【導(dǎo)游】如果人數(shù)不超過30人,人均旅游費(fèi)用為360元.
【領(lǐng)隊(duì)】超過30人怎樣優(yōu)惠呢?
【導(dǎo)游】如果超過30人,每增加1人,人均旅游費(fèi)用降低5元,但人均旅游費(fèi)用不得低于300元.
我校按旅行社的收費(fèi)標(biāo)準(zhǔn)組團(tuán)瀏覽“文成銅鈴山”結(jié)束后,共支付給旅行社12400元.設(shè)我校這次參加旅游的共有x人.
請你根據(jù)上述信息,回答下列問題:
(1)我校參加旅游的人數(shù)x的取值范圍是
 
;
(2)我校參加旅游的人每人實(shí)際應(yīng)收費(fèi)
 
元(用含x的代數(shù)式表示);
(3)求我校這次到“文成銅鈴山”觀光旅游的女職工共有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

(2013•鎮(zhèn)江)【閱讀】
如圖1,在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(a,0)(a>0),B(2,3),C(0,3).過原點(diǎn)O作直線l,使它經(jīng)過第一、三象限,直線l與y軸的正半軸所成角設(shè)為θ,將四邊形OABC的直角∠OCB沿直線l折疊,點(diǎn)C落在點(diǎn)D處,我們把這個(gè)操作過程記為FZ[θ,a].
【理解】
若點(diǎn)D與點(diǎn)A重合,則這個(gè)操作過程為FZ[
45°
45°
3
3
];
【嘗試】
(1)若點(diǎn)D恰為AB的中點(diǎn)(如圖2),求θ;
(2)經(jīng)過FZ[45°,a]操作,點(diǎn)B落在點(diǎn)E處,若點(diǎn)E在四邊形0ABC的邊AB上,求出a的值;若點(diǎn)E落在四邊形0ABC的外部,直接寫出a的取值范圍;
【探究】
經(jīng)過FZ[θ,a]操作后,作直線CD交x軸于點(diǎn)G,交直線AB于點(diǎn)H,使得△ODG與△GAH是一對相似的等腰三角形,直接寫出FZ[θ,a].

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•紹興)小明和同桌小聰在課后復(fù)習(xí)時(shí),對課本“目標(biāo)與評定”中的一道思考題,進(jìn)行了認(rèn)真的探索.
【思考題】如圖,一架2.5米長的梯子AB斜靠在豎直的墻AC上,這時(shí)B到墻C的距離為0.7米,如果梯子的頂端沿墻下滑0.4米,那么點(diǎn)B將向外移動多少米?
(1)請你將小明對“思考題”的解答補(bǔ)充完整:
解:設(shè)點(diǎn)B將向外移動x米,即BB1=x,
則B1C=x+0.7,A1C=AC-AA1=
2.52-0.72
-0.4=2
而A1B1=2.5,在Rt△A1B1C中,由B1C2+A1C2=A1
B
2
1
得方程
(x+0.7)2+22=2.52
(x+0.7)2+22=2.52

解方程得x1=
0.8
0.8
,x2=
-2.2(舍去)
-2.2(舍去)
,
∴點(diǎn)B將向外移動
0.8
0.8
米.
(2)解完“思考題”后,小聰提出了如下兩個(gè)問題:
【問題一】在“思考題”中,將“下滑0.4米”改為“下滑0.9米”,那么該題的答案會是0.9米嗎?為什么?
【問題二】在“思考題”中,梯子的頂端從A處沿墻AC下滑的距離與點(diǎn)B向外移動的距離,有可能相等嗎?為什么?
請你解答小聰提出的這兩個(gè)問題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

(2012•李滄區(qū)一模)【問題引入】
幾個(gè)人拎著水桶在一個(gè)水龍頭前面排隊(duì)打水,水桶有大有。麄冊撛鯓优抨(duì)才能使得總的排隊(duì)時(shí)間最短?
假設(shè)只有兩個(gè)人時(shí),設(shè)大桶接滿水需要T分鐘,小桶接滿水需要t分鐘(顯然T>t),若拎著大桶者在拎著小桶者之前,則拎大桶者可直接接水,只需等候T分鐘,拎小桶者一共等候了(T+t)分鐘,兩人一共等候了(2T+t)分鐘;反之,若拎小桶者在拎大桶者前面,容易求出出兩人接滿水等候(T+2t)分鐘.可見,要使總的排隊(duì)時(shí)間最短,拎小桶者應(yīng)排在拎大桶者前面.這樣,我們可以猜測,幾個(gè)人拎著水桶在一個(gè)水龍頭前面排隊(duì)打水,要使總的排隊(duì)時(shí)間最短,需將他們按水桶從小到大排隊(duì).
規(guī)律總結(jié):
事實(shí)上,只要不按從小到大的順序排隊(duì),就至少有緊挨著的兩個(gè)人拎著大桶者排在拎小桶者之前,仍設(shè)大桶接滿水需要T分鐘,小桶接滿水需要t分鐘,并設(shè)拎大桶者開始接水時(shí)已等候了m分鐘,這樣拎大桶者接滿水一共等候了(m+T)分鐘,拎小桶者一共等候了(m+T+t)分鐘,兩人一共等候了(2m+2T+t)分鐘,在其他人位置不變的前提下,讓這兩個(gè)人交還位置,即局部調(diào)整這兩個(gè)人的位置,同樣介意計(jì)算兩個(gè)人接滿水共等候了
2m+2t+T
2m+2t+T
分鐘,共節(jié)省了
T-t
T-t
分鐘,而其他人等候的時(shí)間未變,這說明只要存在有緊挨著的兩個(gè)人是拎大桶者在拎小桶者之前都可以這樣調(diào)整,從而使得總等候時(shí)間減少.這樣經(jīng)過一系列調(diào)整后,整個(gè)隊(duì)伍都是從小打到排列,就打到最優(yōu)狀態(tài),總的排隊(duì)時(shí)間就最短.
【方法探究】
一般的,對某些設(shè)計(jì)多個(gè)可變對象的數(shù)學(xué)問題,先對其少數(shù)對象進(jìn)行調(diào)整,其他對象暫時(shí)保持不變,從而化難為易,取得問題的局部解決.經(jīng)過若干次這種局部的調(diào)整,不斷縮小范圍,逐步逼近目標(biāo),最終使問題得到解決,這種數(shù)學(xué)思想就叫做局部調(diào)整法.
【實(shí)踐應(yīng)用1】
如圖1在銳角△ABC中,AB=4
2
,∠BAC=45°,∠BAC的平分線交BC于點(diǎn)D,M、N分別是AD和AB上的動點(diǎn),則BM+MN的最小值是多少?
解析:
(1)先假定N為定點(diǎn),調(diào)整M到合適的位置使BM+MN有最小值(相對的),容易想到,在AC上作AN′=AN(即作點(diǎn)N關(guān)于AD的對稱點(diǎn)N'),連接BN′交AD于M,則M點(diǎn)是使BM+MN有相對最小值的點(diǎn).(如圖2,M點(diǎn)是確定方法找到的)
(2)在考慮點(diǎn)N的位置,使BM+MN最終達(dá)到最小值.可以理解,BM+MN=BM+MN′,所以要使BM+MN′有最小值,只需使
BM+MN′=BN′
BM+MN′=BN′
,此時(shí)BM+MN的最小值是
4
4

【實(shí)踐應(yīng)用2】
如圖3,把邊長是3的正方形等分成9個(gè)小正方形,在有陰影的小正方形內(nèi)(包括邊界)分別取點(diǎn)P、R,于已知格點(diǎn)Q(每個(gè)小正方形的頂點(diǎn)叫做格點(diǎn))構(gòu)成三角形,則△PQR的最大面積是
2
2
,請?jiān)趫D4中畫出面積最大時(shí)的△PQR的圖形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【問題】在正方形網(wǎng)格中,如圖(一),△OAB的頂點(diǎn)分別為O(0,0),A(1,2),B(2,-1).
(1)以點(diǎn)O(0,0)為位似中心,按比例尺3:1在位似中心的同側(cè)將△OAB放大為△OA′B′,放大后點(diǎn)A、B的對應(yīng)點(diǎn)分別為A′、B′.畫出△OA′B′,并寫出點(diǎn)A'、B'的坐標(biāo):A′(
3
3
,
6
6
),B′(
6
6
,
-3
-3
);
(2)在(1)中,若點(diǎn)C(a,b)為線段AB上任一點(diǎn),寫出變化后點(diǎn)C的對應(yīng)點(diǎn)C′的坐標(biāo)(
3a
3a
3b
3b
);
【拓展】在平面內(nèi),先將一個(gè)多邊形以點(diǎn)O為位似中心放大或縮小,使所得多邊形與原多邊形對應(yīng)線段的比為k,并且原多邊形上的任一點(diǎn)P,它的對應(yīng)點(diǎn)P'在線段OP或其延長線上;接著將所得多邊形以點(diǎn)O為旋轉(zhuǎn)中心,逆時(shí)針旋轉(zhuǎn)一個(gè)角度θ,這種經(jīng)過和旋轉(zhuǎn)的圖形變換叫做旋轉(zhuǎn)相似變換,記為O(k,θ),其中點(diǎn)O叫做旋轉(zhuǎn)相似中心,k叫做相似比,θ叫做旋轉(zhuǎn)角.
【探索】如圖(二),完成下列問題:
(3)填空:如圖1,將△ABC以點(diǎn)A為旋轉(zhuǎn)相似中心,放大為原來的2倍,再逆時(shí)針旋轉(zhuǎn)60°,得到△ADE,這個(gè)旋轉(zhuǎn)相似變換記為A(
2
2
60°
60°
);
(4)如圖2,△ABC是邊長為3cm的等邊三角形,將它作旋轉(zhuǎn)相似變換A(
43
,90°)
,得到△ADE,求線段BD的長.

查看答案和解析>>

同步練習(xí)冊答案