【題目】已知關(guān)于x的方程

(1)求證:方程恒有兩個不相等的實數(shù)根 ;

(2)若此方程的一個根是1,請求出方程的另一個根.

【答案】(1)證明見解析;(2)3

【解析】試題分析:(1)根據(jù)關(guān)于x的方程x2-(m+2)x+(2m-1)=0的根的判別式的符號來證明結(jié)論;(2)根據(jù)一元二次方程的解的定義求得m值,然后由根與系數(shù)的關(guān)系求得方程的另一根.

解:(1)證明:∵△=(m+2)2-4(2m-1)=(m-2)2+4,
∴在實數(shù)范圍內(nèi),m無論取何值,(m-2)2+4≥4,即≥4,
∴關(guān)于x的方程x2-(m+2)x+(2m-1)=0恒有兩個不相等的實數(shù)根;
(2)根據(jù)題意,得12-1×(m+2)+(2m-1)=0,
解得,m=2,

則方程的另一根為:m+2-1=2+1=3;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若多邊形的邊數(shù)增加一條,則它的外角和(

A.增加180°B.不變C.增加360°D.減少180°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀資料:小明是一個愛動腦筋的好學(xué)生,他在學(xué)習(xí)了有關(guān)圓的切線性質(zhì)后,意猶未盡,又查閱到了與圓的切線相關(guān)的一個問題:

如圖1,已知PC是⊙O的切線,AB是⊙O的直徑,延長BA交切線PCP,連接ACBC、OC

因為PC是⊙O的切線,AB是⊙O的直徑,所以∠OCP=ACB=90°,所以∠1=2.
又因為∠B=1,所以∠B=2.

PACPCB中,又因為:∠P=P,所以PAC∽△PCB,所以,即PC2=PAPB

問題拓展:

Ⅰ)如果PB不經(jīng)過⊙O的圓心O(如圖2)等式PC2=PAPB,還成立嗎?請證明你的結(jié)論;

綜合應(yīng)用:

Ⅱ)如圖3,OABC的外接圓,PC是⊙O的切線,C是切點,BA的延長線交PC于點P;

(1)當(dāng)AB=PA,且PC=12時,求PA的值;

(2)DBC的中點,PDAC于點E.求證:

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】桂林冬季里某一天最高氣溫是7℃,最低氣溫是﹣1℃,這一天桂林的溫差是(  )
A.﹣8℃
B.6℃
C.7℃
D.8℃

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,AB的垂直平分線交ABN,交ACM.

(1)若∠B=70°,則∠NMA的度數(shù)是   

(2)連接MB,若AB=8cm,△MBC的周長是14cm.

BC的長;

在直線MN上是否存在點P,使由P,B,C構(gòu)成的△PBC的周長值最?若存在,標(biāo)出點P的位置并求△PBC的周長最小值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知空氣的單位體積質(zhì)量為1.24×103克/厘米3 , 1.24×103用小數(shù)表示為(
A.0.000124
B.0.0124
C.﹣0.00124
D.0.00124

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,DABCBC邊上的一點,∠B =40°ADC=80°

1)求證:AD=BD;

2)若∠BAC=70°,判斷ABC的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】商場某種新商品每件進(jìn)價是120在試銷期間發(fā)現(xiàn),當(dāng)每件商品售價為130元時,每天可銷售70,當(dāng)每件商品售價高于130元時,每漲價1日銷售量就減少1.據(jù)此規(guī)律,請回答:

(1)當(dāng)每件商品售價定為170元時,每天可銷售多少件商品?商場獲得的日盈利是多少?

(2)在上述條件不變,商品銷售正常的情況下,每件商品的銷售價定為多少元時,商場日盈利可達(dá)到1600?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列事件中,屬于不可能事件的是( 。

A. 從裝滿紅球的袋子中隨機(jī)摸出一個球,是紅球

B. 擲一枚質(zhì)地均勻的骰子,朝上一面的點數(shù)是3

C. 隨時打開電視機(jī),正在播新聞

D. 通常情況下,自來水在10℃就結(jié)冰

查看答案和解析>>

同步練習(xí)冊答案