【題目】如圖,已知AC=9.6 cm,AB=,CD=2AB,求CD的長.
【答案】解:∵即BC="5AB" ………………………………………1分
∵AB+BC=AC …………………………………………………2分
即:AB+5AB="9.6" …………………………………………………3分
∴AB=1.6 …………………………………………………4分
∵
∴CD=2×1.6=3.2 ……………………………………………………6分
【解析】
試題根據(jù)AB=BC可知,BC=5AB,再根據(jù)AC=9.6cm可得出AB的長,再由CD=2AB即可求解.
試題解析:∵,即BC=5AB,
∵AB+BC=AC,
即:AB+5AB=9.6 cm,
∴AB=1.6 cm,
∵,
∴CD=2×1.6=3.2 cm
科目:初中數(shù)學(xué) 來源: 題型:
【題目】國際象棋、中國象棋和圍棋號稱世界三大棋種. 國際象棋中的“皇后”的威力可比中國象棋中的“車”大得多:“皇后”不僅能控制她所在的行與列中的每一個小方格,而且還能控制“斜”方向的兩條直線上的每一個小方格.如圖甲是一個4×4的小方格棋盤,圖中的“皇后Q”能控制圖中虛線所經(jīng)過的每一個小方格.
(1)在如圖乙的小方格棋盤中有一“皇后Q”,她所在的位置可用“(2,3)”來表示,請說明“皇后Q”所在的位置“(2,3)”的意義,并用這種表示法分別寫出棋盤中不能被該“皇后Q”所控制的四個位置.
(2)如圖丙也是一個4×4的小方格棋盤,請在這個棋盤中放入四個“皇后Q”,使這四個“皇后Q”之間互不受對方控制(在圖丙中的某四個小方格中標(biāo)出字母Q即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,從①∠1=∠2;②∠C=∠D;③∠A=∠F三個條件中選出兩個作為已知條件,另一個作為結(jié)論所組成的命題中,正確命題的個數(shù)為( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一種拉桿式旅行箱的示意圖,箱體長AB=50cm,拉桿最大伸長距離BC=30cm,(點A、B、C在同一條直線上),在箱體的底端裝有一圓形滾輪⊙A,其直徑為10cm,⊙A與水平地面切于點D,過A作AE∥DM.當(dāng)人的手自然下垂拉旅行箱時,人感覺較為舒服,已知某人的手自然下垂在點C處且拉桿達(dá)到最大延伸距離時,點C距離水平地面(40 +5)cm,求此時拉桿箱與水平面AE所成角∠CAE的大小及點B到水平地面的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線l1∥l2,直線l3和直線l1、l2交于點C和D,點P是直線CD上的一個動點。
(1)如果點P運動到C、D之間時,試探究∠PAC,∠APB,∠PBD之間的關(guān)系,并說明理由。
(2)若點P在C、D兩點的外側(cè)運動時(P點與點C、D不重合),∠PAC,∠APB,∠PBD之間 的關(guān)系是否發(fā)生改變?請說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖矩形ABCD中,AD=5,AB=7,點E為DC上一個動點,把△ADE沿AE折疊,當(dāng)點D的對應(yīng)點D′落在∠ABC的角平分線上時,DE的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】嘉嘉參加機器人設(shè)計活動,需操控機器人在5×5的方格棋盤上從A點行走至B點,且每個小方格皆為正方形,主辦單位規(guī)定了三條行走路徑R1,R2,R3,其行經(jīng)位置如圖與表所示:
路徑 | 編號 | 圖例 | 行徑位置 |
第一條路徑 | R1 | _ | A→C→D→B |
第二條路徑 | R2 | … | A→E→D→F→B |
第三條路徑 | R3 | ▂ | A→G→B |
已知A、B、C、D、E、F、G七點皆落在格線的交點上,且兩點之間的路徑皆為直線,在無法使用任何工具測量的條件下,請判斷R1、R2、R3這三條路徑中,最長與最短的路徑分別為何?請寫出你的答案,并完整說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com