【題目】如圖,小島在港口P的北偏西60°方向,距港口56海里的A處,貨船從港口P出發(fā),沿北偏東45°方向勻速駛離港口P,4小時后貨船在小島的正東方向.求貨船的航行速度.(精確到0.1海里/時,參考數(shù)據(jù):≈1.41, ≈1.73)

【答案】貨船的航行速度約為9.9海里/時.

【解析】

由已知可得PQAB,QAP=60°,A=30°,AP=56海里,要求貨船的航行速度,即是求PB的長,可先在直角三角形APQ中利用三角函數(shù)求出PQ,然后利用三角函數(shù)求出PB即可.

設(shè)貨船速度為x海里/時,

4小時后貨船在點B處,作PQAB于點Q.

由題意AP=56海里,PB=4x海里,

在直角三角形APQ中,∠APQ=60°,

所以PQ=28,

在直角三角形PQB中,∠BPQ=45°,

所以,PQ=PB×cos45°=2x.

所以,2x=28,

解得:x=7≈9.9.

答:貨船的航行速度約為9.9海里/時.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD中,BE平分∠DBC且交CD邊于點E,將△BCE繞點C順時針旋轉(zhuǎn)到△DCF的位置,并延長BE交DF于點G.

(1)求證:△BDG∽△DEG;

(2)若EGBG=4,求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,垂直平分,分別交于點,,垂直平分,分別交,于點,

1)若的周長為29,,求的長度;

2)若,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線的圖象與x軸的一個交點為B(5,0),另一個交點為A,且與y軸交于點C(0,5)。

(1)求直線BC與拋物線的解析式;

(2)若點M是拋物線在x軸下方圖象上的動點,過點M作MNy軸交直線BC于點N,求MN的最大值;

(3)在(2)的條件下,MN取得最大值時,若點P是拋物線在x軸下方圖象上任意一點,以BC為邊作平行四邊形CBPQ,設(shè)平行四邊形CBPQ的面積為S1,ABN的面積為S2,且S1=6S2,求點P的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知點A,點B,點Cy軸上的一個動點,當(dāng)∠BCA=30°時,點C的坐標(biāo)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,兩直角邊AC8cm,BC6cm

1)作∠BAC的平分線ADBC于點D;(尺規(guī)作圖,不寫作法,保留作圖痕跡)

2)計算△ABD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,點O為對角線AC的中點,過O點的射線OM,ON分別交AB,BC于點E,F,且∠EOF=90°,BO,EF交于點P,則下面結(jié)論:

①圖形中全等的三角形只有三對;②△EOF是等腰直角三角形;③正方形ABCD的面積等于四邊形OEBF面積的4倍;④BEBF=OA

其中正確結(jié)論的個數(shù)是(  )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,P是對角線AC上的一點,點E在BC的延長線上,且PE=PB.

(1)求證:BCP≌△DCP;

(2)求證:DPE=ABC;

(3)把正方形ABCD改為菱形,其它條件不變(如圖),若ABC=58°,則DPE=   度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠B=90°,AB=12,BC=24,動點P從點A開始沿邊AB向終點B以每秒2個單位長度的速度移動,動點Q從點B開始沿邊BC以每秒4個單位長度的速度向終點C移動,如果點P、Q分別從點A、B同時出發(fā),那么△PBQ的面積S隨出發(fā)時間t(s)如何變化?寫出函數(shù)關(guān)系式及t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案