如圖,在平面直角坐標(biāo)系xOy中,二次函數(shù)y=ax2+bx-3(a,b是常數(shù))的圖象與x軸交于點(diǎn)A(-3,0)和點(diǎn)B(1,0),與y軸交于點(diǎn)C.動(dòng)直線y=t(t為常數(shù))與拋物線交于不同的兩點(diǎn)P、Q.
(1)求a和b的值;
(2)求t的取值范圍;
(3)若∠PCQ=90°,求t的值.

解:(1)將點(diǎn)A、點(diǎn)B的坐標(biāo)代入可得:,
解得:

(2)拋物線的解析式為y=x2+2x-3,直線y=t,
聯(lián)立兩解析式可得:x2+2x-3=t,即x2+2x-(3+t)=0,
∵動(dòng)直線y=t(t為常數(shù))與拋物線交于不同的兩點(diǎn),
∴△=4+4(3+t)>0,
解得:t>-4;

(3)∵y=x2+2x-3=(x+1)2-4,
∴拋物線的對(duì)稱軸為直線x=-1,
當(dāng)x=0時(shí),y=-3,∴C(0,-3).
設(shè)點(diǎn)Q的坐標(biāo)為(m,t),則P(-2-m,t).
如圖,設(shè)PQ與y軸交于點(diǎn)D,則CD=t+3,DQ=m,DP=m+2.

∵∠PCQ=∠PCD+∠QCD=90°,∠DPC+∠PCD=90°,
∴∠QCD=∠DPC,又∠PDC=∠QDC=90°,
∴△QCD∽△CDP,
,即
整理得:t2+6t+9=m2+2m,
∵Q(m,t)在拋物線上,∴t=m2+2m-3,∴m2+2m=t+3,
∴t2+6t+9=t+3,化簡(jiǎn)得:t2+5t+6=0
解得t=-2或t=-3,
當(dāng)t=-3時(shí),動(dòng)直線y=t經(jīng)過(guò)點(diǎn)C,故不合題意,舍去.
∴t=-2.
分析:(1)將點(diǎn)A、點(diǎn)B的坐標(biāo)代入二次函數(shù)解析式可求出a、b的值;
(2)根據(jù)二次函數(shù)及y=t,可得出方程,有兩個(gè)交點(diǎn),可得△>0,求解t的范圍即可;
(3)證明△PDC∽△CDQ,利用相似三角形的對(duì)應(yīng)邊成比例,可求出t的值.
點(diǎn)評(píng):本題是二次函數(shù)綜合題型,考查了二次函數(shù)的圖象與性質(zhì)、待定系數(shù)法、相似三角形、解一元二次方程等知識(shí)點(diǎn).第(3)問(wèn)中,注意拋物線上點(diǎn)的坐標(biāo)特征.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫(huà)圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長(zhǎng)為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時(shí),求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請(qǐng)寫(xiě)出點(diǎn)P的坐標(biāo)(不要求過(guò)程,只需寫(xiě)出結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案