【題目】如圖1,在△ABC和△EDC中,AC=CE=CB=CD;∠ACB=∠DCE=90°,AB與CE交于F,ED與AB,BC,分別交于M,H.
(1)求證:CF=CH;
(2)如圖2,△ABC不動,將△EDC繞點C旋轉(zhuǎn)到∠BCE=45°時,試判斷四邊形ACDM是什么四邊形?并證明你的結(jié)論.
【答案】(1)證明見試題解析;(2)四邊形ACDM是菱形.
【解析】
試題分析:(1)由∠ABC=∠DCE=90°,AC=CE=CB=CD,可得∠B=∠E=45°,故有△BCF≌△ECH,得出CF=CH;
(2)由△EDC繞點C旋轉(zhuǎn)到∠BCE=45°,推出四邊形ACDM是平行四邊形,由AC=CD判斷出四邊形ACDM是菱形.
試題解析:(1)∵AC=CE=CB=CD,∠ACB=∠ECD=90°,∴∠A=∠B=∠D=∠E=45°.在△BCF和△ECH中,∵∠B=∠E,BC=EC,∠BCE=∠ECH,∴△BCF≌△ECH(ASA),∴CF=CH(全等三角形的對應(yīng)邊相等);
(2)四邊形ACDM是菱形.證明如下:
∵∠ACB=∠DCE=90°,∠BCE=45°,∴∠1=∠2=45°.∵∠E=45°,∴∠1=∠E,∴AC∥DE,∴∠AMH=180°﹣∠A=135°=∠ACD,又∵∠A=∠D=45°,∴四邊形ACDM是平行四邊形(兩組對角相等的四邊形是平行四邊形),∵AC=CD,∴四邊形ACDM是菱形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是某學(xué)校全體教職工年齡的頻數(shù)分布直方圖(每組年齡包含最小值,不包含最大值),根據(jù)圖形提供的信息,下列說法中錯誤的是( )
A.該學(xué)校教職工總?cè)藬?shù)是50人
B.這一組年齡在40≤x<42小組的教職工人數(shù)占該學(xué)校全體教職工總?cè)藬?shù)的20%
C.教職工年齡的中位數(shù)一定落在40≤x<42這一組
D.教職工年齡的眾數(shù)一定在38≤x<40這一組
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于平行四邊形ABCD的敘述,正確的是( )
A. 若AB⊥BC,則平行四邊形ABCD是菱形 B. 若AC⊥BD,則平行四邊形ABCD是正方形
C. 若AC=BD,則平行四邊形ABCD是矩形 D. 若AB=AD,則平行四邊形ABCD是正方形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】汽車剎車后的距離y(單位:m)與行駛的時間x(單位:s)的函數(shù)關(guān)系式是:y=10x﹣x2,那么汽車剎車后到靜止滑行了_____m.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一元二次方程25x2+20x=﹣4的根的情況是( 。
A.有兩個相等的實數(shù)根B.有兩個不相等的實數(shù)根
C.只有一個實數(shù)根D.沒有實數(shù)根
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某次考試中,某班級的數(shù)學(xué)成績統(tǒng)計圖如下.下列說法錯誤的是( )
A.得分在70~80分之間的人數(shù)最多
B.該班的總?cè)藬?shù)為40
C.得分在90~100分之間的人數(shù)最少
D.及格(≥60分)人數(shù)是26
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了加強學(xué)生的安全意識,某校組織了學(xué)生參加安全知識競賽.從中抽取了部分學(xué)生成績(得分數(shù)取正整數(shù),滿分為100分)進行統(tǒng)計,繪制統(tǒng)計頻數(shù)分布直方圖(未完成)和扇形圖如下,請解答下列問題:
(1)A組的頻數(shù)a比B組的頻數(shù)b小24,樣本容量 , a為:
(2)n為°,E組所占比例為%:
(3)補全頻數(shù)分布直方圖;
(4)若成績在80分以上優(yōu)秀,全校共有2000名學(xué)生,估計成績優(yōu)秀學(xué)生有名.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com