【題目】如圖,ABCD中,DF平分∠ADC,交BC于點F,BE平分∠ABC,交AD于點E.
(1)求證:四邊形BFDE是平行四邊形;
(2)若∠AEB=68°,求∠C.
【答案】(1)見解析;(2)∠C=44°.
【解析】
(1)由平行四邊形的性質(zhì)及角平分線的性質(zhì)可得AB=AE,CF=CD,進而可得四邊形EBFD是平行四邊形,即可得出結(jié)論;
(2)根據(jù)平行線的性質(zhì)和角平分線的定義即可得到結(jié)論.
(1)證明:在平行四邊形ABCD中,AD∥BC,
∴∠AEB=∠CBE,
又BE平分∠ABC,
∴∠ABE=∠EBC,
∴∠ABE=∠AEB,即AB=AE,
同理CF=CD,
又AB=CD,∴CF=AE,
∴BF=DE,
∴四邊形EBFD是平行四邊形;
(2)解:∵∠AEB=68°,AD∥BC,
∴∠EBF=∠AEB=68°,
∵BE平分∠ABC,
∴∠ABC=2∠EBF=136°,
∴∠C=180°-∠ABC=44°.
故答案為:(1)見解析;(2)∠C=44°.
科目:初中數(shù)學 來源: 題型:
【題目】將正整數(shù)按如圖的規(guī)律排列:平移表中的方框,方框中的4個數(shù)的和可能是( )
A.2010B.2014C.2018D.2022
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形中,,且,,給出以下判斷:①四邊形是菱形;②四邊形的面積;③順次連接四邊形的四邊中點得到的四邊形是正方形;④將沿直線對折,點落在點處,連接并延長交于點,當時,點到直線的距離為;其中真確的是( )
A. ①③B. ①④C. ②③D. ②④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】自實施新教育改革后,學生的自主學習、合作交流能力有很大提高,張老師為了了解所教班級學生自主學習、合作交流的具體情況,對本班部分同學進行了為期半個月的跟蹤調(diào)查,并將調(diào)查結(jié)果分為四類:A.特別好;B.好;C.一般;D.較差,并將調(diào)查結(jié)果繪制成以下兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖解答下列問題:
(1)本次調(diào)查中,張老師一共調(diào)查了多少名同學?
(2)求出調(diào)查中C類女生及D類男生的人數(shù),將條形統(tǒng)計圖補充完整;
(3)為了共同進步,張老師想從被調(diào)查的A類和D類學生中分別選取一位同學進行“一幫一”互助學習,請用列表法或畫樹形圖的方法求出所選兩位同學恰好是一位男同學和一位女同學的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O的直徑AB=10,弦AC=6,∠ACB的平分線交⊙O于點D,過點D作DE∥AB交CA延長線于點E,連接AD,BD.
(1)△ABD的面積是________:
(2)求證:DE是⊙O的切線:
(3)求線段DE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】兩根木條,一根長20cm,另一根長24cm,將它們一端重合且放在同一條直線上,此時兩根木條的中點之間的距離為( )
A. 2cm B. 4cm C. 2cm或22cm D. 4cm或44cm
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,AB是⊙O的直徑,弦BC=2cm,∠ABC=60.
(1)求⊙O的直徑;
(2)若D是AB延長線上一點,連結(jié)CD,當BD長為多少時,CD與⊙O相切;
(3)若動點E以2cm/s的速度從點A出發(fā)沿著AB方向運動,同時動點F以1cm/s的速度從點B出發(fā)沿BC方向運動,設運動時間為t(s)(0<t<2),連結(jié)EF,當t為何值時,△BEF為直角三角形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中有對角線AC與BD相等,已知AB=4,BC=3,則有AB2+BC2=AC2,矩形在直線MN上繞其右下角的頂點B向右旋轉(zhuǎn)90°至圖①位置,再繞右下角的頂點繼續(xù)向右旋轉(zhuǎn)至圖②位置……依次類推,則:
(1)AC=__________.
(2)這樣連續(xù)旋轉(zhuǎn)2019次后,頂點B在整個旋轉(zhuǎn)過程中所經(jīng)過的路程之和是________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com