【題目】如圖,直線(xiàn)y=3x與雙曲線(xiàn)y= (k≠0,且x>0)交于點(diǎn)A,點(diǎn)A的橫坐標(biāo)是1.
(1)求點(diǎn)A的坐標(biāo)及雙曲線(xiàn)的解析式;
(2)點(diǎn)B是雙曲線(xiàn)上一點(diǎn),且點(diǎn)B的縱坐標(biāo)是1,連接OB,AB,求△AOB的面積.
【答案】(1)y= ;(2)4.
【解析】試題分析:(1)把x=1代入直線(xiàn)解析式求出y的值,確定出A坐標(biāo),將A坐標(biāo)代入反比例解析式求出k的值即可;
(2)先求出點(diǎn)B的坐標(biāo),再利用割補(bǔ)法求解可得.
試題解析:(1)將x=1代入y=3x,得:y=3,∴點(diǎn)A的坐標(biāo)為(1,3),將A(1,3)代入,得:k=3,∴反比例函數(shù)的解析式為;
(2)在中y=1時(shí),x=3,∴點(diǎn)B(3,1),如圖,S△AOB=S矩形OCED﹣S△AOC﹣S△BOD﹣S△ABE=3×3﹣×1×3﹣×1×3﹣×2×2=4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等邊△ABC中,D是邊AC上一點(diǎn),連接BD.將△BCD繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到△BAE,連接ED.若BC=10,BD=9,求△AED的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠AOB=30,∠AOB 內(nèi)有一定點(diǎn) P,且 OP=12,在 OA 上有一動(dòng)點(diǎn) Q,OB 上有 一動(dòng)點(diǎn) R。若△PQR 周長(zhǎng)最小,則最小周長(zhǎng)是( )
A. 6 B. 12 C. 16 D. 20
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A(0,8),點(diǎn)B(4,0),連接AB,點(diǎn)M,N分別是OA,AB的中點(diǎn),在射線(xiàn)MN上有一動(dòng)點(diǎn)P.若△ABP是直角三角形,則點(diǎn)P的坐標(biāo)是__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠MAN=60°,AP平分∠MAN,點(diǎn)B是射線(xiàn)AP上一定點(diǎn),點(diǎn)C在直線(xiàn)AN上運(yùn)動(dòng),連接BC,將∠ABC(0°<∠ABC<120°)的兩邊射線(xiàn)BC和BA分別繞點(diǎn)B順時(shí)針旋轉(zhuǎn)120°,旋轉(zhuǎn)后角的兩邊分別與射線(xiàn)AM交于點(diǎn)D和點(diǎn)E.
(1)如圖1,當(dāng)點(diǎn)C在射線(xiàn)AN上時(shí),
①請(qǐng)判斷線(xiàn)段BC與BD的數(shù)量關(guān)系,直接寫(xiě)出結(jié)論;
②請(qǐng)?zhí)骄烤(xiàn)段AC,AD和BE之間的數(shù)量關(guān)系,寫(xiě)出結(jié)論并證明;
(2)如圖2,當(dāng)點(diǎn)C在射線(xiàn)AN的反向延長(zhǎng)線(xiàn)上時(shí),BC交射線(xiàn)AM于點(diǎn)F,若AB=4,AC=,請(qǐng)直接寫(xiě)出線(xiàn)段AD和DF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在7x2﹣4x+1﹣x2﹣2+6x中,7x2與_____是同類(lèi)項(xiàng),6x與_____是同類(lèi)項(xiàng),﹣2與____是同類(lèi)項(xiàng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(9分) “先學(xué)后教”課題組對(duì)學(xué)生參與小組合作的深度和廣度進(jìn)行評(píng)價(jià),其評(píng)價(jià)項(xiàng)目為主動(dòng)質(zhì)疑、獨(dú)立思考、專(zhuān)注聽(tīng)講、講解題目四項(xiàng).課題組隨機(jī)抽取了若干名初中學(xué)生的參與情況,繪制了如圖兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中所給信息解答下列問(wèn)題:
(1)在這次評(píng)價(jià)中,一共抽查了______名學(xué)生;
(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)求出扇形統(tǒng)計(jì)圖中,“主動(dòng)質(zhì)疑”所對(duì)應(yīng)扇形的圓心角的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】提出問(wèn)題:如圖①,在四邊形ABCD中,P是AD邊上任意一點(diǎn),
△PBC與△ABC和△DBC的面積之間有什么關(guān)系?
探究發(fā)現(xiàn):為了解決這個(gè)問(wèn)題,我們可以先從一些簡(jiǎn)單的、特殊的情形入手:
(1)當(dāng)AP=AD時(shí)(如圖②):
∵AP=AD,△ABP和△ABD的高相等,
∴S△ABP=S△ABD.
∵PD=AD﹣AP=AD,△CDP和△CDA的高相等,
∴S△CDP=S△CDA.
∴S△PBC=S四邊形ABCD﹣S△ABP﹣S△CDP
=S四邊形ABCD﹣S△ABD﹣S△CDA
=S四邊形ABCD﹣(S四邊形ABCD﹣S△DBC)﹣(S四邊形ABCD﹣S△ABC)
=S△DBC+S△ABC.
(2)當(dāng)AP=AD時(shí),探求S△PBC與S△ABC和S△DBC之間的關(guān)系,寫(xiě)出求解過(guò)程;
(3)當(dāng)AP=AD時(shí),S△PBC與S△ABC和S△DBC之間的關(guān)系式為: ;
(4)一般地,當(dāng)AP=AD(n表示正整數(shù))時(shí),探求S△PBC與S△ABC和S△DBC之間的關(guān)系,寫(xiě)出求解過(guò)程;
問(wèn)題解決:當(dāng)AP=AD(0≤≤1)時(shí),S△PBC與S△ABC和S△DBC之間的關(guān)系式為: .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com