【題目】在平面直角坐標(biāo)系中,二次函數(shù)yax2+bx+ca0)的圖象如圖所示,現(xiàn)給以下結(jié)論:①abc0;②c+2a0;③9a3b+c0;④abmam+b)(m為實(shí)數(shù));⑤4acb20.其中錯(cuò)誤結(jié)論的個(gè)數(shù)有( 。

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

【答案】A

【解析】

由拋物線的開(kāi)口方向判斷a0的關(guān)系,由拋物線與y軸的交點(diǎn)判斷c0的關(guān)系,然后根據(jù)對(duì)稱軸及拋物線與x軸交點(diǎn)情況進(jìn)行推理,進(jìn)而對(duì)所得結(jié)論進(jìn)行判斷.

解:①由拋物線可知:a0,c0

對(duì)稱軸x=﹣0,

b0,

abc0,故①正確;

②由對(duì)稱軸可知:﹣=﹣1,

b2a

x1時(shí),ya+b+c0,

c+3a0,

c+2a=﹣3a+2a=﹣a0,故②正確;

③(1,0)關(guān)于x=﹣1的對(duì)稱點(diǎn)為(﹣30),

x=﹣3時(shí),y9a3b+c0,故③正確;

④當(dāng)x=﹣1時(shí),y的最小值為ab+c,

xm時(shí),yam2+bm+c,

am2+bm+c≥a-b+c,

ab≤mam+b),故④錯(cuò)誤;

⑤拋物線與x軸有兩個(gè)交點(diǎn),

∴△>0,

b24ac0,

4acb20,故⑤正確;

故選:A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】“一村一品,綻放致富夢(mèng)”,泰順縣恩代洋村因獼猴桃被入選全國(guó)“一村一品”示范村鎮(zhèn).為更新果樹(shù)品種,恩代洋村某果農(nóng)計(jì)劃購(gòu)進(jìn)、三種果樹(shù)苗木栽植培育.已知種果苗每捆比種果苗每捆多10元,種果苗每捆30元,購(gòu)買50種果苗所花錢(qián)比購(gòu)買60種果苗的錢(qián)多100元.(每種果苗按整捆購(gòu)買,且每捆果苗數(shù)相同)

1種果苗每捆分別需要多少錢(qián);

2)現(xiàn)批發(fā)商推出限時(shí)贈(zèng)送優(yōu)惠活動(dòng):購(gòu)買一捆種果苗贈(zèng)送一捆種果苗.(最多贈(zèng)送10種果苗)

①若購(gòu)買種果苗7捆、種果苗5捆和種果苗10捆,共需多少錢(qián);

②若需購(gòu)買種果苗10捆,預(yù)算資金為600元,在不超額的前提下,最多可以買多少捆果苗.求所有滿足條件的方案,并指出哪種方案購(gòu)買費(fèi)用最少.(每種至少各1捆)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形紙片中,,對(duì)折矩形紙片,使重合,折痕為,展平后再過(guò)點(diǎn)折疊,使點(diǎn)落在上的點(diǎn),折痕為.再次展平,連接,,有下列結(jié)論:①;②相似;③的長(zhǎng)為:④若分別為線段上的動(dòng)點(diǎn)(不包含端點(diǎn)),則的最小值是.其中正確結(jié)論的序號(hào)是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著生活節(jié)奏的加快以及智能手機(jī)的普及,外賣點(diǎn)餐逐漸成為越來(lái)越多用戶的餐飲消費(fèi)習(xí)慣.由此催生了一批外賣點(diǎn)餐平臺(tái),已知某外賣平臺(tái)的送餐費(fèi)用與送餐距離有關(guān)(該平臺(tái)只給5千米范圍內(nèi)配送),為調(diào)査送餐員的送餐收入,現(xiàn)從該平臺(tái)隨機(jī)抽取80名點(diǎn)外賣的用戶進(jìn)行統(tǒng)計(jì),按送餐距離分類統(tǒng)計(jì)結(jié)果如下表:

送餐距離x(千米)

0x1

1x2

2x3

3x4

4x5

數(shù)量

12

20

24

16

8

1)從這80名點(diǎn)外賣的用戶中任取一名用戶,該用戶的送餐距離不超過(guò)3千米的概率為

2)以這80名用戶送餐距離為樣本,同一組數(shù)據(jù)取該小組數(shù)據(jù)的中間值(例如第二小組(1x 2)的中間值是1.5),試估計(jì)利用該平臺(tái)點(diǎn)外賣用戶的平均送餐距離;

3)若該外賣平臺(tái)給送餐員的送餐費(fèi)用與送餐距離有關(guān),不超過(guò)2千米時(shí),每份3元;超過(guò)2千米但不超4千米時(shí),每份5元;超過(guò)4千米時(shí),每份9元. 以給這80名用戶所需送餐費(fèi)用的平均數(shù)為依據(jù),若送餐員一天的目標(biāo)收入不低于150元,試估計(jì)一天至少要送多少份外賣?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了強(qiáng)化學(xué)生的環(huán)保意識(shí),某校團(tuán)委在全校舉辦了“保護(hù)環(huán)境,人人有責(zé)”知識(shí)競(jìng)賽活動(dòng),初、高中根據(jù)初賽成績(jī),各選出5名選手組成初中代表隊(duì)和高中代表隊(duì)進(jìn)行復(fù)賽,兩個(gè)隊(duì)學(xué)生的復(fù)賽成績(jī)(滿分10分)如圖所示:

1)根據(jù)圖示填寫(xiě)下表:

平均分

中位數(shù)

眾數(shù)

方差

初中隊(duì)

8.5

0.7

高中隊(duì)

8.5

10

2)小明同學(xué)說(shuō):這次復(fù)賽我得了8分,在我們隊(duì)中排名屬中游偏下!小明是初中隊(duì)還是高中隊(duì)的學(xué)生?為什么?

3)結(jié)合兩隊(duì)成績(jī)的平均分、中位數(shù)和方差,分析哪個(gè)對(duì)的復(fù)賽成績(jī)較好.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題情境:

在綜合與實(shí)踐課上,老師讓同學(xué)們以矩形紙片的剪拼為主題開(kāi)展數(shù)學(xué)活動(dòng).如圖1,將矩形紙片沿對(duì)角線剪開(kāi),得到.并且量得.

操作發(fā)現(xiàn):

(1)將圖1中的以點(diǎn)為旋轉(zhuǎn)中心,按逆時(shí)針?lè)较蛐D(zhuǎn),使,得到如圖2所示的,過(guò)點(diǎn)的平行線,與的延長(zhǎng)線交于點(diǎn),則四邊形的形狀是________.

(2)創(chuàng)新小組將圖1中的以點(diǎn)為旋轉(zhuǎn)中心,按逆時(shí)針?lè)较蛐D(zhuǎn),使、三點(diǎn)在同一條直線上,得到如圖3所示的,連接,取的中點(diǎn),連接并延長(zhǎng)至點(diǎn),使,連接,得到四邊形,發(fā)現(xiàn)它是正方形,請(qǐng)你證明這個(gè)結(jié)論.

實(shí)踐探究:

(3)縝密小組在創(chuàng)新小組發(fā)現(xiàn)結(jié)論的基礎(chǔ)上,進(jìn)行如下操作:將沿著方向平移,使點(diǎn)與點(diǎn)重合,此時(shí)點(diǎn)平移至點(diǎn),相交于點(diǎn),如圖4所示,連接,試求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】請(qǐng)認(rèn)真閱讀下面的數(shù)學(xué)探究,并完成所提出的問(wèn)題.

1)探究1:如圖1,在邊長(zhǎng)為的等邊三角形中,邊上任意一點(diǎn),連接,將繞點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn)至處,連接,求面積的最小值.

2)探究2:如圖2,若是腰長(zhǎng)為的等腰直角三角形,,(1)中的其他條件不變,請(qǐng)求出此時(shí)面積的最小值.

3)探究3:如圖3,在中,,,,邊上任意一點(diǎn),連接,將繞點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn)至處,、三點(diǎn)共線,連接,求的面積的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠B90°,∠BAC的平分線交BC于點(diǎn)D,EAB上的一點(diǎn),DEDC,以D為圓心,DB長(zhǎng)為半徑作⊙D,AB5,EB3

1)求證:AC是⊙D的切線;

2)求線段AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】實(shí)行垃圾分類和垃圾資源化利用,關(guān)系廣大人民群眾生活環(huán)境,關(guān)系節(jié)約使用資源,也是社會(huì)文明水平的一個(gè)重要體現(xiàn).某環(huán)保公司研發(fā)了甲、乙兩種智能設(shè)備,可利用最新技術(shù)將干垃圾進(jìn)行分選破碎制成固化成型燃料棒,干垃圾由此變身新型清潔燃料.某垃圾處理廠從環(huán)保公司購(gòu)入以上兩種智能設(shè)備若干,已知購(gòu)買甲型智能設(shè)備花費(fèi)萬(wàn)元,購(gòu)買乙型智能設(shè)備花費(fèi)萬(wàn)元,購(gòu)買的兩種設(shè)備數(shù)量相同,且兩種智能設(shè)備的單價(jià)和為萬(wàn)元.

求甲、乙兩種智能設(shè)備單價(jià);

垃圾處理廠利用智能設(shè)備生產(chǎn)燃料棒,并將產(chǎn)品出售.已知燃料棒的成本由人力成本和物資成本兩部分組成,其中物資成本占總成本的,且生產(chǎn)每噸燃料棒所需人力成本比物資成本的倍還多.調(diào)查發(fā)現(xiàn),若燃料棒售價(jià)為每噸元,平均每天可售出噸,而當(dāng)銷售價(jià)每降低元,平均每天可多售出.垃圾處理廠想使這種燃料棒的銷售利潤(rùn)平均每天達(dá)到元,且保證售價(jià)在每噸元基礎(chǔ)上降價(jià)幅度不超過(guò),求每噸燃料棒售價(jià)應(yīng)為多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案