【題目】如圖,在Rt△ABC中,∠B=90°,∠BAC的平分線交BC于點D,E為AB上的一點,DE=DC,以D為圓心,DB長為半徑作⊙D,AB=5,EB=3.
(1)求證:AC是⊙D的切線;
(2)求線段AC的長.
【答案】(1)證明見解析;(2)8
【解析】
(1)過點D作DF⊥AC于F,根據切線的性質可得∠B=90°,即AB⊥BC,然后根據角平分線的性質可得DE=DF,從而證得結論;
(2)根據已知DE=DC和(1)的結論可知DF⊥AC,AB⊥BC以及半徑DB=DF,得證Rt△BDE≌Rt△DCF(HL),進而得證EB=FC,再由AB=AF,可知AC=AF+FC=AB+EB=8.
解:(1)過點D作DF⊥AC于F;
∵AB為⊙D的切線,
∴∠B=90°,
∴AB⊥BC
∵AD平分∠BAC,DF⊥AC,
∴BD=DF,
∴AC與圓D相切;
(2)在△BDE和△DCF中;
∵BD=DF,DE=DC,
∴Rt△BDE≌Rt△DCF(HL),
∴EB=FC.
∵AB=AF,
∴AB+EB=AF+FC,
即AB+EB=AC,
∴AC=5+3=8.
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+3(a≠0)的對稱軸為直線x=﹣1,拋物線交x軸于A、C兩點,與直線y=x﹣1交于A、B兩點,直線AB與拋物線的對稱軸交于點E.
(1)求拋物線的解板式.
(2)點P在直線AB上方的拋物線上運動,若△ABP的面積最大,求此時點P的坐標.
(3)在平面直角坐標系中,以點B、E、C、D為頂點的四邊形是平行四邊形,請直接寫出符合條件點D的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,二次函數y=ax2+bx+c(a≠0)的圖象如圖所示,現給以下結論:①abc<0;②c+2a<0;③9a﹣3b+c=0;④a﹣b≥m(am+b)(m為實數);⑤4ac﹣b2<0.其中錯誤結論的個數有( 。
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知四邊形中,、分別是、邊上的點,與交于點.
(1)如圖1,若四邊形是矩形,且,求證:;
(2)如圖2,若四邊形是平行四邊形,試探究:當與滿足什么關系時,使得成立?并證明你的結論;
(3)如圖3,若,,,,請直接寫出的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某藥店購進一批消毒液,計劃每瓶標價100元,由于疫情得到有效控制,藥店決定對這批消毒液全部降價銷售,設每次降價的百分率相同,經過連續(xù)兩次降價后,每瓶售價為81元.
(1)求每次降價的百分率.
(2)若按標價出售,每瓶能盈利100%,問第一次降價后銷售消毒液100瓶,第二次降價后至少需要銷售多少瓶,總利潤才能超過5000元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小麗早晨6:00從家里出發(fā),騎車去菜場買菜,然后從菜場返回家中.小麗離家的路程(米)和所經過的時間(分)之間的函數圖象如圖所示,請根據圖象回答下列問題:
(1)小麗去菜場途中的速度是多少?在菜場逗留了多長時間?
(2)小麗幾點幾分返回到家?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形AEFG的頂點E、G在正方形ABCD的邊AB、AD上,連接BF、DF.
(1)求證:BF=DF;
(2)連接CF,請直接寫出的值為__________(不必寫出計算過程).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,二次函數的圖象與軸交于點,(點位于對稱軸的左側),與軸交于點.點為線段上一點,過點作直線軸交圖象于點,(點在點的左側),且.
(1)求該二次函數的對稱軸及的值.
(2)將頂點向右平移個單位至點,再過點作直線的對稱點,若點在軸上方的圖象上一點且到軸距離為1,求,的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“端午節(jié)”是我國的傳統(tǒng)佳節(jié),民間歷來有吃“粽子”的習俗.我市某食品廠為了解市民對去年銷量較好的肉餡粽、豆沙餡粽、紅棗餡粽、蛋黃餡粽(以下分別用A、B、C、D表示)這四種不同口味粽子的喜愛情況,在節(jié)前對某居民區(qū)市民進行了抽樣調查,并將調查情況繪制成如下兩幅統(tǒng)計圖(尚不完整).
請根據以上信息回答:
(1)本次參加抽樣調查的居民有多少人?
(2)將兩幅不完整的圖補充完整;
(3)若居民區(qū)有8000人,請估計愛吃D粽的人數;
(4)若有外型完全相同的A、B、C、D粽各一個,煮熟后,小王吃了兩個.用列表或畫樹狀圖的方法,求他第二個吃到的恰好是C粽的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com