【題目】已知拋物線(為常數(shù)).
(1)當(dāng)該拋物線經(jīng)過坐標(biāo)原點(diǎn),并且頂點(diǎn)在第四象限時(shí),求出它所對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)設(shè)是(1)所確定的拋物線上位于軸下方、且在對(duì)稱軸左側(cè)的一個(gè)動(dòng)點(diǎn),過作軸的平行線,交拋物線于另一點(diǎn),再作軸于,軸于.
①當(dāng)時(shí),求矩形的周長;
②試問矩形的周長是否存在最大值?如果存在,請(qǐng)求出這個(gè)最大值,并指出此時(shí)點(diǎn)的坐標(biāo).如果不存在,請(qǐng)說明理由.
【答案】(1)y=x2-3x;(2)①6;②存在;最大值為,此時(shí)A(,)
【解析】
(1)將原點(diǎn)坐標(biāo)代入拋物線的解析式中,即可求出n的值,然后根據(jù)拋物線頂點(diǎn)在第四象限將不合題意的n值舍去,即可得出所求的二次函數(shù)解析式;
(2)①先根據(jù)拋物線的解析式求出拋物線與x軸另一交點(diǎn)E的坐標(biāo),根據(jù)拋物線和矩形的對(duì)稱性可知:OB的長,就是OE與BC的差的一半,由此可求出OB的長,即B點(diǎn)的坐標(biāo),然后代入拋物線的解析式中即可求出B點(diǎn)縱坐標(biāo),也就得出了矩形AB邊的長.進(jìn)而可求出矩形的周長;
②可設(shè)出A點(diǎn)坐標(biāo)(設(shè)橫坐標(biāo),根據(jù)拋物線的解析式表示縱坐標(biāo)),也就能表示出B點(diǎn)的坐標(biāo),即可得出OB的長,同①可得出BC的長,而AB的長就是A點(diǎn)縱坐標(biāo)的絕對(duì)值,由此可得出一個(gè)關(guān)于矩形周長和A點(diǎn)縱坐標(biāo)的函數(shù)關(guān)系式,根據(jù)函數(shù)的性質(zhì)可得出矩形周長的最大值及對(duì)應(yīng)的A的坐標(biāo).
解:(1)由已知條件,得n2-1=0,
解這個(gè)方程,得n1=1,n2=-1,
當(dāng)n=1時(shí),得y=x2+x,此拋物線的頂點(diǎn)不在第四象限,
當(dāng)n=-1時(shí),得y=x2-3x,此拋物線的頂點(diǎn)在第四象限,
∴所求的函數(shù)關(guān)系為y=x2-3x;
(2)由y=x2-3x,
令y=0,得x2-3x=0,
解得x1=0,x2=3,
∴拋物線與x軸的另一個(gè)交點(diǎn)為(3,0),
∴它的頂點(diǎn)為(,),對(duì)稱軸為直線x=,其大致位置如圖所示,
①∵BC=1,易知OB=×(3-1)=1,
∴B(1,0),
∴點(diǎn)A的橫坐標(biāo)x=1,又點(diǎn)A在拋物線y=x2-3x上,
∴點(diǎn)A的縱坐標(biāo)y=12-3×1=-2.
∴AB=|y|=|-2|=2,
∴矩形ABCD的周長為:2(AB+BC)=2×(2+1)=6;
②∵點(diǎn)A在拋物線y=x2-3x上,故可設(shè)A點(diǎn)的坐標(biāo)為(x,x2-3x),
∴B點(diǎn)的坐標(biāo)為(x,0)(0<x<)
∴BC=3-2x,A在x軸下方,
∴x2-3x<0,
∴AB=|x2-3x|=3x-x2
∴矩形ABCD的周長,
C=2[(3x-x2)+(3-2x)]=-2(x-)2+,
∵a=-2<0,拋物線開口向下,二次函數(shù)有最大值,
∴當(dāng)x=時(shí),矩形ABCD的周長C最大值為,
此時(shí)點(diǎn)A的坐標(biāo)為A(,).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2019年4月22日是第50個(gè)世界地球日,某校在八年級(jí)5個(gè)班中,每班各選拔10名學(xué)生參加“環(huán)保知識(shí)競(jìng)賽”并評(píng)出了一、二、三等獎(jiǎng)各若干名,學(xué)校將獲獎(jiǎng)情況繪成如圖所示的不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中信息解答下列問題:
(1)求本次競(jìng)賽獲獎(jiǎng)的總?cè)藬?shù),并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)求扇形統(tǒng)計(jì)圖中“二等獎(jiǎng)”所對(duì)應(yīng)扇形的圓心角度數(shù);
(3)如果該校八年級(jí)有800人,請(qǐng)你估計(jì)獲獎(jiǎng)的同學(xué)共有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一塊長5米寬4米的地毯,為了美觀設(shè)計(jì)了兩橫、兩縱的配色條紋(圖中陰影部分),已知配色條紋的寬度相同,所占面積是整個(gè)地毯面積的.
(1)求配色條紋的寬度;
(2)如果地毯配色條紋部分每平方米造價(jià)200元,其余部分每平方米造價(jià)100元,求地毯的總造價(jià).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c與x軸交于點(diǎn)A(-1,O)、C(3,0),點(diǎn)B為拋物線頂點(diǎn),直線BD為拋物線的對(duì)稱軸,點(diǎn)D在x軸上,連接AB、BC.
⑴如圖1,若∠ABC=60°,則點(diǎn)B的坐標(biāo)為______________;
⑵如圖2,若∠ABC=90°,AB與y軸交于點(diǎn)E,連接CE.
①求這條拋物線的解析式;
②點(diǎn)P為第一象限拋物線上一個(gè)動(dòng)點(diǎn),設(shè)△PEC的面積為S,點(diǎn)P的橫坐標(biāo)為m,求S關(guān)于m的函數(shù)關(guān)系武,并求出S的最大值;
③如圖3,連接OB,拋物線上是否存在點(diǎn)Q,使直線QC與直線BC所夾銳角等于∠OBD,若存在請(qǐng)直接寫出點(diǎn)Q的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+x+2與x軸交于點(diǎn)A,B,與y軸交于點(diǎn)C.
(1)試求A,B,C的坐標(biāo);
(2)將△ABC繞AB中點(diǎn)M旋轉(zhuǎn)180°,得到△BAD.3
①求點(diǎn)D的坐標(biāo);
②判斷四邊形ADBC的形狀,并說明理由;
(3)在該拋物線對(duì)稱軸上是否存在點(diǎn)P,使△BMP與△BAD相似?若存在,請(qǐng)直接寫出所有滿足條件的P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠MON=90°,已知△ABC中,AC=BC=AB=6,△ABC的頂點(diǎn)A、B分別在邊OM、ON上,當(dāng)點(diǎn)B在邊ON上運(yùn)動(dòng)時(shí),A隨之在OM上運(yùn)動(dòng),△ABC的形狀始終保持不變,在運(yùn)動(dòng)的過程中,點(diǎn)C到點(diǎn)O的距離為整數(shù)的點(diǎn)有( 。﹤(gè).
A.5B.6C.7D.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ABC=60°,BC=8,點(diǎn)D為△ABC內(nèi)一點(diǎn),BD=CD,∠ABD+∠ADC=180°,若AD=2,則AC的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知:點(diǎn) ,點(diǎn) ,點(diǎn) ,在 內(nèi)依次作等邊三角形,使一邊在 軸上,另一個(gè)頂點(diǎn)在 邊上,作出的等邊三角形分別是第 個(gè) ,第 個(gè) ,第 個(gè) , ,則第 個(gè)等邊三角形的邊長等于 ________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,以△ABC的邊AB為直徑作⊙O,點(diǎn)C在⊙O上,BD是⊙O的弦,∠A=∠CBD,過點(diǎn)C作CF⊥AB于點(diǎn)F,交BD于點(diǎn)G過C作CE∥BD交AB的延長線于點(diǎn)E.
(1)求證:CE是⊙O的切線;
(2)求證:CG=BG;
(3)若∠DBA=30°,CG=8,求BE的長.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com