【題目】如圖,已知拋物線(a≠0)交x軸與A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),將直尺WXYZ與x軸負(fù)方向成45°放置,邊WZ經(jīng)過拋物線上的點(diǎn)C(4,m),與拋物線的另一交點(diǎn)為點(diǎn)D,直尺被x軸截得的線段EF=2,且△CEF的面積為6.

(1)求該拋物線的解析式;

(2)探究:在直線AC上方的拋物線上是否存在一點(diǎn)P,使得△ACP的面積最大?若存在,請(qǐng)求出面積的最大值及此時(shí)點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

(3)將直尺以每秒2個(gè)單位的速度沿x軸向左平移,設(shè)平移的時(shí)間為t秒,平移后的直尺為W′X′Y′Z′,其中邊X′Y′所在的直線與x軸交于點(diǎn)M,與拋物線的其中一個(gè)交點(diǎn)為點(diǎn)N,請(qǐng)直接寫出當(dāng)t為何值時(shí),可使得以C、D、M、N為頂點(diǎn)的四邊形是平行四邊形.

【答案】(1);(2)存在一點(diǎn)P(1,),使得△ACP的面積最大,面積的最大值為;(3)

【解析】

試題分析:(1)∵S△CEF=EFyC=×2m=6,∴m=6,即點(diǎn)C的坐標(biāo)為(4,6),將點(diǎn)C(4,6)代入拋物線(a≠0)中,得:6=16a+8+6,解得:a=,∴該拋物線的解析式為

(2)假設(shè)存在.過點(diǎn)P作y軸的平行線,交x軸與點(diǎn)M,交直線AC于點(diǎn)N,如圖1所示.

令拋物線中y=0,則有,解得:,,∴點(diǎn)A的坐標(biāo)為(﹣2,0),點(diǎn)B的坐標(biāo)為(6,0).

設(shè)直線AC的解析式為y=kx+b,點(diǎn)P的坐標(biāo)為(n,)(﹣2<n<4),∵直線AC過點(diǎn)A(﹣2,0)、C(4,6),∴,解得:,∴直線AC的解析式為y=x+2.

∵點(diǎn)P的坐標(biāo)為(n,),∴點(diǎn)N的坐標(biāo)為(n,n+2).

∵S△ACP=PN(xC﹣xA)==,∴當(dāng)n=1時(shí),S△ACP取最大值,最大值為,此時(shí)點(diǎn)P的坐標(biāo)為(1,),在直線AC上方的拋物線上存在一點(diǎn)P,使得△ACP的面積最大,面積的最大值為,此時(shí)點(diǎn)P的坐標(biāo)為(1,).

(3)∵直尺WXYZ與x軸負(fù)方向成45°放置,∴設(shè)直線CD的解析式為y=﹣x+c,∵點(diǎn)C(4,6)在直線CD上,∴6=﹣4+c,解得:c=10,∴直線CD的解析式為y=﹣x+10.

聯(lián)立直線CD與拋物線解析式成方程組:,解得:,或,∴點(diǎn)D的坐標(biāo)為(2,8).

令直線CD的解析式y(tǒng)=﹣x+10中y=0,則0=﹣x+10,解得:x=10,即點(diǎn)E的坐標(biāo)為(10,0),∵EF=2,且點(diǎn)E在點(diǎn)F的左邊,∴點(diǎn)F的坐標(biāo)為(12,0).

設(shè)點(diǎn)M的坐標(biāo)為(12﹣2t,0),則點(diǎn)N的坐標(biāo)為(12﹣2t﹣2,0+2),即N(10﹣2t,2).

∵點(diǎn)N(10﹣2t,2)在拋物線的圖象上,∴,整理得:,解得:,,當(dāng)t為秒時(shí),可使得以C、D、M、N為頂點(diǎn)的四邊形是平行四邊形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若點(diǎn)A(3,n)x軸上,則點(diǎn)B(n1,n1)(   )

A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)a、bx2+x﹣2011=0的兩個(gè)實(shí)根,則a3+a2+3a+2014b=________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列語句中屬于命題的是(  )

A. 作直線AB的平行線 B. 同旁內(nèi)角相等 C. ∠1與∠2互余嗎 D. 在線段AB上取點(diǎn)C

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題中的真命題是( 。

A.對(duì)角線互相垂直的四邊形是菱形

B.中心對(duì)稱圖形都是軸對(duì)稱圖形

C.三角形的一個(gè)外角大于它的內(nèi)角

D.數(shù)據(jù)23,12的方差是0.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把原來彎曲的河道改直,A,B兩地間的河道長度變短,這樣做的道理是( 。

A.兩點(diǎn)確定一條直線
B.兩點(diǎn)之間線段最短
C.兩點(diǎn)之間直線最短
D.垂線段最短

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)圖象上部分點(diǎn)的坐標(biāo)(x,y)對(duì)應(yīng)值列表如下:

x

﹣3

﹣2

﹣1

0

1

y

﹣3

﹣2

﹣3

﹣6

﹣11

則該函數(shù)圖象的對(duì)稱軸是(
A.直線x=﹣3
B.直線x=﹣2
C.直線x=﹣1
D.直線x=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知反比例函數(shù)y= (k為常數(shù),k≠0)的圖象經(jīng)過點(diǎn)A(2,3).
(Ⅰ)求這個(gè)函數(shù)的解析式;
(Ⅱ)判斷點(diǎn)B(﹣1,6),C(3,2)是否在這個(gè)函數(shù)的圖象上,并說明理由;
(Ⅲ)當(dāng)﹣3<x<﹣1時(shí),求y的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若 x-1是方程 2x 3a13的解,則 a______.

查看答案和解析>>

同步練習(xí)冊(cè)答案