如圖,在等邊△ABC中,M、N分別是邊AB,AC的中點(diǎn),D為MN的中點(diǎn),CD,BD的延長(zhǎng)線分別交于AB,AC于點(diǎn)E,點(diǎn)F,下列結(jié)論正確的是( )
①M(fèi)N的長(zhǎng)是BC的;
②△EMD的面積是△ABC面積的;
③EM和FN的長(zhǎng)度相等;
④圖中全等的三角形有4對(duì);
⑤連接EF,則四邊形EBCF一定是等腰梯形.

A.①②⑤
B.①③④
C.①②④
D.①③⑤
【答案】分析:根據(jù)等腰梯形的性質(zhì)及全等三角形的判定等知識(shí)對(duì)各個(gè)結(jié)論進(jìn)行分析從而得到答案.
解答:解:①由三角形的中位線可得,故正確;
②無(wú)法得到此結(jié)論,故不正確;
③利用ASA可判定△EMD≌△FND,從而可得到EM=FN,故正確;
④其5對(duì),分別是:△BDM≌△CDN,△DME≌△DNF,△BDE≌△CDF,△ABF≌△ACE,△BCE≌△CBF,故不正確;
⑤可通過(guò)證明三角形全等得到BE=CF且EF∥BC,從而推出四邊形EBCF一定是等腰梯形,故正確;
所以正確的有①③⑤,故選D.
點(diǎn)評(píng):此題主要考查學(xué)生對(duì)等腰梯形的判定及全等三角形的判定等知識(shí)點(diǎn)的理解及運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

16、如圖,在等邊△ABC的邊BC上任取一點(diǎn)D,作∠ADE=60°,DE交∠C的外角平分線于E,則△ADE是
等邊
三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在等邊△ABC中,D為BC邊上一點(diǎn),E為AC邊上一點(diǎn),且∠ADE=60°,BD=3,CE=2,則△ABC的面積為( 。
A、81
3
B、
81
3
2
C、
81
3
4
D、
81
3
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

21、如圖,在等邊△ABC中,AD是∠BAC的平分線,點(diǎn)E在AC邊上,且∠EDC=15°.
(1)試說(shuō)明直線AD是線段BC的垂直平分線;
(2)△ADE是什么三角形?說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在等邊△ABC中,D是AC的中點(diǎn),延長(zhǎng)BC到點(diǎn)E,使CE=CD,AB=10cm.
(1)求BE的長(zhǎng);
(2)△BDE是什么三角形,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在等邊△ABC中,BF是高,D是BF上一點(diǎn),且OF=AF,作OE⊥BF,垂足為D,且OE=OB,連AE、AO、BE,求證:
(1)AB=AE;
(2)AE⊥BC; 
(3)AO⊥BE.

查看答案和解析>>

同步練習(xí)冊(cè)答案