【題目】如圖,在Rt△ABC中,∠B=90°,BC>AB,在BC邊上取點D,使AB=BD,構造正方形ABDE,DE交AC于點F,作EG⊥AC交AC于點G,交BC于點H.
(1)求證:EF=DH;
(2)若AB=6,DH=2DF,求AC的長.
【答案】(1)見解析;(2)3
【解析】
(1)根據正方形的性質及同角的余角相等建立AAS即可證明△AFE≌△EHD,再根據全等三角形的性質即可得出答案;
(2)設DF=x,則EF=DH=2x,根據AB=6即可求出x的值;再證明△AEF∽△CDF即可求出BC的值,最后根據勾股定理即可得出答案.
解:(1)證明:在正方形ABDE中,AE=ED,∠AEF=∠EDH=90°
∴∠DHE+∠GEF=90°
∵EG⊥AC
∴∠GEF+∠GFE=90°
∴∠GFE=∠DHE
在△AFE和△EHD中
∴△AFE≌△EHD(AAS)
∴EF=DH;
(2)∵DH=2DF,EF=DH
∴設DF=x,則EF=DH=2x
∵AB=6
∴AE=DE=6
∴x+2x=6
∴x=2
∴DF=2,EF=4
∵在正方形ABDE中,AE∥BD
∴△AEF∽△CDF
∴
∴
∴DC=3
∴BC=BD+DC=6+3=9
∴在Rt△ABC中,由勾股定理得:
AC===
∴AC的長為.
科目:初中數學 來源: 題型:
【題目】拋物線的部分圖象如圖所示,與x軸的一個交點坐標為,拋物線的對稱軸是下列結論中:
;;方程有兩個不相等的實數根;拋物線與x軸的另一個交點坐標為;若點在該拋物線上,則.
其中正確的有
A. 5個 B. 4個 C. 3個 D. 2個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我們定義:對角線互相垂直的四邊形叫做垂美四邊形.
(1)如圖1,垂美四邊形ABCD的對角線AC,BD交于O.求證:AB2+CD2=AD2+BC2;
(2)如圖2,分別以Rt△ACB的直角邊AC和斜邊AB為邊向外作正方形ACFG和正方形ABDE,連結BE,CG,GE.
①求證:四邊形BCGE是垂美四邊形;
②若AC=4,AB=5,求GE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】網購已經成為一種時尚,某網絡購物平臺“雙十一”全天交易額逐年增長,2016年交易額為500億元,2018年交易額為720億元。
(1)2016年至2018年“雙十一”交易額的年平均增長率是多少?
(2)若保持原來的增長率,試計算2019年該平臺“雙十一”的交易額將達到多少億元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】矩形ABCD中,AB=6,以AB為直徑在矩形內作半圓,與DE相切于點E(如圖),延長DE交BC于F,若BF=,則陰影部分的面積為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,要建一個長方形養(yǎng)雞場,養(yǎng)雞場的一邊靠墻(墻長25米),另三邊用竹籬笆圍成,竹籬笆的長為40米,若要圍成的養(yǎng)雞場的面積為180平方米,求養(yǎng)雞場的長、寬各為多少米,設與墻平行的一邊長為米.
(1)填空:(用含的代數式表示)另一邊長為 米;
(2)列出方程,并求出問題的解.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正△ABC的邊長為2,過點B的直線l⊥AB,且△ABC與△A′BC′關于直線l對稱,D為線段BC′上一動點,則AD+CD的最小值是( )
A. 4 B. 3 C. 2 D. 2+
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在解決數學問題時,我們常常從特殊入手,猜想結論,并嘗試發(fā)現(xiàn)解決問題的策略與方法.
(問題提出)
求證:如果一個定圓的內接四邊形對角線互相垂直,那么這個四邊形的對邊的平方和是一個定值.
(從特殊入手)
我們不妨設定圓O的半徑是R,⊙O的內接四邊形ABCD中,AC⊥BD.
請你在圖①中補全特殊殊位置時的圖形,并借助于所畫圖形探究問題的結論.
(問題解決)
已知:如圖②,定圓⊙O的半徑是R,四邊形ABCD是⊙O的內接四邊形, AC⊥BD.
求證: .
證明:
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com