精英家教網(wǎng)如圖,一圓錐的底面半徑為2,母線PB的長為6,D為PB的中點.一只螞蟻從點A出發(fā),沿著圓錐的側面爬行到點D,則螞蟻爬行的最短路程為( 。
A、
3
B、2
3
C、3
3
D、3
分析:要求螞蟻爬行的最短距離,需將圓錐的側面展開,進而根據(jù)“兩點之間線段最短”得出結果.
解答:解:由題意知,底面圓的直徑AB=4,
故底面周長等于4π.
設圓錐的側面展開后的扇形圓心角為n°,精英家教網(wǎng)
根據(jù)底面周長等于展開后扇形的弧長得4π=
nπ×6
180
,
解得n=120°,
所以展開圖中∠APD=120°÷2=60°,
因為半徑PA=PB,∠APB=60°,
故三角形PAB為等邊三角形,
又∵D為PB的中點,
所以AD⊥PB,在直角三角形PAD中,PA=6,PD=3,
根據(jù)勾股定理求得AD=3
3
,
所以螞蟻爬行的最短距離為3
3

故選C.
點評:圓錐的側面展開圖是一個扇形,此扇形的弧長等于圓錐底面周長,扇形的半徑等于圓錐的母線長.本題就是把圓錐的側面展開成扇形,“化曲面為平面”,用勾股定理解決.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(1997•廣州)如圖,點B的坐標為(0,-2),點A在x軸正半軸上,將Rt△AOB繞y軸旋轉一周,得到一個圓錐.
(1)當圓錐的側面積為
5
π時,求AB所在直線的函數(shù)解析式;
(2)若已知OA的長度為a,按這個圓錐的形狀造一個容器,并在母線AB上刻出把這個容器的容積兩等分的刻度點C,試用含a的代數(shù)式去表示BC的長度t(圓錐體積公式:V=
1
3
πr2h,其中r和h分別是圓錐的底面半徑和高).

查看答案和解析>>

科目:初中數(shù)學 來源:1997年廣東省廣州市中考數(shù)學試卷(解析版) 題型:解答題

如圖,點B的坐標為(0,-2),點A在x軸正半軸上,將Rt△AOB繞y軸旋轉一周,得到一個圓錐.
(1)當圓錐的側面積為π時,求AB所在直線的函數(shù)解析式;
(2)若已知OA的長度為a,按這個圓錐的形狀造一個容器,并在母線AB上刻出把這個容器的容積兩等分的刻度點C,試用含a的代數(shù)式去表示BC的長度t(圓錐體積公式:V=πr2h,其中r和h分別是圓錐的底面半)徑和高).

查看答案和解析>>

同步練習冊答案