如圖:BC⊥AD,垂足為D.若∠A=21°,∠B=42°,求∠C和∠AEF的度數(shù).
考點(diǎn):三角形內(nèi)角和定理,三角形的外角性質(zhì)
專題:
分析:利用“Rt△ADC的內(nèi)角和是180°”的性質(zhì)求得∠C=69°;然后由△BCE的外角性質(zhì)來求∠AEF的度數(shù).
解答:解:∵如圖:BC⊥AD,
∴∠ADC=90°.
∵∠A=21°,
∴∠C=180°-90°-∠A=69°.
又∵∠AEF=∠B+∠C,∠B=42°,
∴∠AEF=69°+42°=111°.
點(diǎn)評(píng):本題考查了三角形的外角性質(zhì),三角形內(nèi)角和定理.當(dāng)然了,此題也可以根據(jù)“直角三角形的兩個(gè)銳角互余”的性質(zhì)來求∠C的度數(shù).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

一條排水管的截面如圖所示.已知排水管的截面圓半徑OB=10,水面寬AB=16,則水管中水的最大深度是( 。
A、4B、6C、8D、10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知k是一元二次方程y(y-1)=y的解,則反比例函數(shù)y=
k-1
x
的解析式為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

一元一次不等式組
x+1>1
1
3
x-1≤0
的解集在數(shù)軸上表示為( 。
A、
B、
C、
D、

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在矩形ABCD中,AB=2,AD=4,將矩形ABCD沿直線EF折疊,D到G得位置,C到H得位置,BC交EG于M點(diǎn).則圖中四邊形ABME和四邊形GHFM的周長(zhǎng)和是(  )
A、4
5
B、8
5
C、10
D、12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

分解因式:
5a3-10a2=
 
;
a2-9=
 

4x2-4x+1=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

若一個(gè)多邊形的邊數(shù)增加3倍,則它的外角和(  )
A、擴(kuò)大3倍
B、變?yōu)樵瓉淼?span id="aovyfm0" class="MathJye" mathtag="math" style="whiteSpace:nowrap;wordSpacing:normal;wordWrap:normal">
1
3
C、保持不變
D、無法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

若m為整數(shù),便分式
3
m+1
為整數(shù)的m的值有
 
 個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

計(jì)算:-0.3÷(-0.15)等于( 。
A、-0.5B、0.5
C、-2D、2

查看答案和解析>>

同步練習(xí)冊(cè)答案