【題目】如圖,將線段AB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到線段A′B′,那么A(﹣2,5)的對(duì)應(yīng)點(diǎn)A′的坐標(biāo)是________

【答案】(5,2).

【解析】試題分析:線段AB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到線段A′B′,∴△ABO≌△A′B′O′,∠AOA′=90°,∴AO=A′O.作AC⊥y軸于C,A′C′⊥x軸于C′,∴∠ACO=∠A′C′O=90°∵∠COC′=90°∴∠AOA′﹣∠COA′=∠COC′﹣∠COA′,∴∠AOC=∠A′OC′.在△ACO△A′C′O中,∵∠ACO=∠A′C′O,∠AOC=∠A′OC′AO=A′O,∴△ACO≌△A′C′OAAS),∴AC=A′C′,CO=C′O∵A﹣25),∴AC=2,CO=5,∴A′C′=2OC′=5,∴A′5,2).故答案為:(5,2).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的一元二次方程mx23xx2m2+1有一個(gè)根是0,則m的值為(  )

A.±1B.1C.1D.10

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了了解某市120000名初中學(xué)生的視力情況,某校數(shù)學(xué)興趣小組,并進(jìn)行整理分析.

1)小明在眼鏡店調(diào)查了1000名初中學(xué)生的視力,小剛在鄰居中調(diào)查了20名初中學(xué)生的視力,他們的抽樣是否合理?并說(shuō)明理由.

2)該校數(shù)學(xué)興趣小組從該市七、八、九年級(jí)各隨機(jī)抽取了1000名學(xué)生進(jìn)行調(diào)查,整理他們的視力情況數(shù)據(jù),得到如下的折線統(tǒng)計(jì)圖.

請(qǐng)你根據(jù)抽樣調(diào)查的結(jié)果,估計(jì)該市120000名初中學(xué)生視力不良的人數(shù)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若正多邊形的內(nèi)角和是1080°,則該正多邊形的邊數(shù)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】不等式組 的解集在數(shù)軸上表示為(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用代數(shù)式表示“m 3 倍與n 的差的平方,正確的是( )

A. 3mn2B. (m3n)2C. (3mn)2D. 3(mn)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將拋物線c1 沿x軸翻折,得到拋物線c2,如圖1所示.

(1)請(qǐng)直接寫出拋物線c2的表達(dá)式;

(2)現(xiàn)將拋物線c1向左平移m個(gè)單位長(zhǎng)度,平移后得到新拋物線的頂點(diǎn)為M,與x軸的交點(diǎn)從左到右依次為A、B;將拋物線c2向右也平移m個(gè)單位長(zhǎng)度,平移后得到新拋物線的頂點(diǎn)為N,與軸的交點(diǎn)從左到右依次為D、E

①當(dāng)BD是線段AE的三等分點(diǎn)時(shí),求m的值;

②在平移過(guò)程中,是否存在以點(diǎn)A、N、E、M為頂點(diǎn)的四邊形是矩形的情形?若存在,請(qǐng)求出此時(shí)m的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)軸上有一個(gè)動(dòng)點(diǎn)A向左移動(dòng)2個(gè)單位長(zhǎng)度到達(dá)B,再向右移動(dòng)5個(gè)單位長(zhǎng)度到達(dá)點(diǎn)C.若點(diǎn)C表示的數(shù)為1,則點(diǎn)A表示的數(shù)為__。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2016年4月10日,武漢馬拉松吸引了來(lái)自世界各地36個(gè)國(guó)家和地區(qū)的2萬(wàn)名專業(yè)和業(yè)余選手同場(chǎng)競(jìng)技.最終肯尼亞選手麥約和埃塞俄比亞選手雷加薩分別摘得男女全程組冠軍.馬拉松全程約為42000米,則42000用科學(xué)記數(shù)法可表示為

查看答案和解析>>

同步練習(xí)冊(cè)答案