如圖,△ABC中,AB=BC,AC=8,tanA=k,P為AC邊上一動點,設(shè)PC=x,作PE∥AB交BC于E,PF∥BC交AB于F.
(1)證明:△PCE是等腰三角形;
(2)EM、FN、BH分別是△PEC、△AFP、△ABC的高,用含x和k的代數(shù)式表示EM、FN,并探究EM、FN、BH之間的數(shù)量關(guān)系;
(3)當(dāng)k=4時,求四邊形PEBF的面積S與x的函數(shù)關(guān)系式.x為何值時,S有最大值?并求出S的最大值.

(1)證明:∵AB=BC,
∴∠A=∠C,
∵PE∥AB,
∴∠CPE=∠A,
∴∠CPE=∠C,
∴△PCE是等腰三角形;

(2)解:∵△PCE是等腰三角形,EM⊥CP,
∴CM=CP=,tanC=tanA=k,
∴EM=CM•tanC=•k=,
同理:FN=AN•tanA=•k=4k-
由于BH=AH•tanA=×8•k=4k,
而EM+FN=+4k-=4k,
∴EM+FN=BH;

(3)解:當(dāng)k=4時,EM=2x,F(xiàn)N=16-2x,BH=16,
所以,S△PCE=x•2x=x2,S△APF=(8-x)•(16-2x)=(8-x)2,S△ABC=×8×16=64,
S=S△ABC-S△PCE-S△APF,
=64-x2-(8-x)2,
=-2x2+16x,
配方得,S=-2(x-4)2+32,
所以,當(dāng)x=4時,S有最大值32.
分析:(1)根據(jù)等邊對等角可得∠A=∠C,然后根據(jù)兩直線平行,同位角相等求出∠CPE=∠A,從而得到∠CPE=∠C,即可得證;
(2)根據(jù)等腰三角形三線合一的性質(zhì)求出CM=CP,然后求出EM,同理求出FN、BH的長,再根據(jù)結(jié)果整理可得EM+FN=BH;
(3)分別求出EM、FN、BH,然后根據(jù)S△PCE,S△APF,S△ABC,再根據(jù)S=S△ABC-S△PCE-S△APF,整理即可得到S與x的關(guān)系式,然后利用二次函數(shù)的最值問題解答.
點評:本題考查了等腰三角形的判定與性質(zhì),平行線的性質(zhì),銳角三角函數(shù),二次函數(shù)的最值問題,表示出各三角形的高線是解題的關(guān)鍵,也是本題的難點.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

26、已知:如圖,△ABC中,點D在AC的延長線上,CE是∠DCB的角平分線,且CE∥AB.
求證:∠A=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點在直線BC上,連接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求證:∠ANM=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知,如圖,△ABC中,點D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度數(shù);
(2)若畫∠DAC的平分線AE交BC于點E,則AE與BC有什么位置關(guān)系,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案