如圖所示,已知四邊形ABCD的四個頂點都在⊙O上,∠BCD=120°,則∠B0D=( )

A.100°
B.120°
C.130°
D.150°
【答案】分析:由圓的內接四邊形的性質,即可求得∠BAD的度數(shù),又由圓周角定理,即可求得答案.
解答:解:∵∠BCD=120°,
∴∠BAD=180°-∠BCD=60°,
∴∠BOD=2BCD=120°.
故選B.
點評:此題考查了圓周角定理與圓的內接四邊形的性質.此題比較簡單,注意掌握數(shù)形結合思想的應用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

53、如圖所示,已知四邊形ABCD是平行四邊形,在AB的延長線上截取BE=AB,BF=BD,連接CE,DF,相交于點M.求證:CD=CM.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•廈門)如圖所示,已知四邊形OABC是菱形,∠O=60°,點M是邊OA的中點,以點O為圓心,r為半徑作⊙O分別交OA,OC于點D,E,連接BM.若BM=
7
,
DE
的長是
3
π
3
.求證:直線BC與⊙O相切.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,已知四邊形OABC是菱形,∠O=60°,點M是邊OA的中點,以點O為圓心,r為半徑作⊙O分別交OA,OC于點D,E,連接BM.若BM=
7
,
DE
的長是
3
π
3

(1)求⊙O的半徑;
(2)直線BC與⊙O是否相切?若不相切說明理由,若相切給予證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,已知四邊形ABCD的四個頂點都在⊙O上,∠BCD=120°,則∠B0D=
120°
120°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,已知四邊形ABCD是等腰梯形,DC∥AB,若AD=BC=5,CD=2,AB=8,求梯形ABCD的面積.

查看答案和解析>>

同步練習冊答案