【題目】如圖,正方形ABCD中,點P,Q分別為AD,CD邊上的點,且DQ=CP,連接BQ,AP.求證:BQ=AP.

【答案】證明:∵四邊形ABCD是正方形, ∴∠BAQ=∠ADP=90°,AB=DA,
∵DQ=CP,
∴AQ=DP,
在△ABQ和△DAP中,
,
∴△ABQ≌△DAP(SAS),
∴BQ=AP.
【解析】直接利用正方形的性質(zhì)得出AQ=DP,再利用全等三角形的判定與性質(zhì)得出答案.
【考點精析】利用正方形的性質(zhì)對題目進行判斷即可得到答案,需要熟知正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,AB=BC,∠ABC=90°,點D是AB的中點,連接CD,過點B作BG⊥CD,分別交CD,CA于點E,F(xiàn),與過點A且垂直于AB的直線相交于點G,連接DF,給出以下五個結論: ① ;②∠ADF=∠CDB;③點F是GE的中點;④AF= AB;⑤SABC=5SBDF ,
其中正確結論的序號是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列函數(shù)中,y隨x的增大而增大的是(
A.y=
B.y=﹣x+5
C.y= x
D.y= (x<0)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC 中,∠C=90°
(1)利用尺規(guī)作∠B 的角平分線交AC于D,以BD為直徑作⊙O交AB于E(保留作圖痕跡,不寫作法);
(2)綜合應用:在(1)的條件下,連接DE ①求證:CD=DE;
②若sinA= ,AC=6,求AD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,BO、CO分別平分∠ABC、ACB.若∠BOC=110°,則∠A=_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,ADBC,AB=10,BD=8,ACD=45°.

(1)求線段AD的長;

(2)求ABC的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在同一平面直角坐標系中,正確表示函數(shù)y=kx+k(k≠0)與y= (k≠0)的圖象的是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小東根據(jù)學習函數(shù)的經(jīng)驗,對函數(shù)y= 圖象與性質(zhì)進行了探究,下面是小東的探究過程,請補充完整,并解決相關問題:
(1)函數(shù)y= 的自變量x的取值范圍是
(2)如表是y與x的幾組對應值.

x

﹣2

﹣1

0

1

2

3

4

y

2

4

2

m

表中m的值為;
(3)如圖,在平面直角坐標系中,描出了以上表中各對對應值為坐標的點,根據(jù)描出的點,畫出函數(shù)y= 的大致圖象;
(4)結合函數(shù)圖象,請寫出函數(shù)y= 的一條性質(zhì).
(5)解決問題:如果函數(shù)y= 與直線y=a的交點有2個,那么a的取值范圍是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】今年“中秋”節(jié)前,朵朵的媽媽去超市購買了大小、形狀、重量等都相同的五仁和豆沙月餅若干,放入不透明的盒中,此時從盒中隨機取出五仁月餅的概率為 ;爸爸從盒中取出五仁月餅3只、豆沙粽子7只送給爺爺和奶奶后,這時隨機取出五仁月餅的概率為
(1)請你用所學知識計算:媽媽買的五仁月餅和豆沙月餅各有多少只?
(2)若朵朵一次從盒內(nèi)剩余月餅中任取2只,問恰有五仁月餅、豆沙月餅各1只的概率是多少?(用列表法或樹狀圖計算)

查看答案和解析>>

同步練習冊答案