【題目】如圖1、2,已知四邊形ABCD為正方形,在射線AC上有一動點P,作PEAD(或延長線)于E,作PFDC(或延長線)于F,作射線BP交EF于G.

(1)在圖1中,設(shè)正方形ABCD的邊長為2,四邊形ABFE的面積為y,AP=x,求y關(guān)于x的函數(shù)表達式;

(2)結(jié)論:GBEF對圖1,圖2都是成立的,請任選一圖形給出證明;

(3)請根據(jù)圖2證明:FGC∽△PFB.

【答案】(1)y=x2+2;(2)證明見解析;(3)證明見解析.

【解析】

試題分析:(1)根據(jù)題意得出S四邊形ABFE=4﹣ED×DF﹣BC×FC進而得出答案;

(2)首先利用正方形的性質(zhì)進而證明FPE≌△BHP(SAS),即可得出FPG∽△BPH,求出即可;

(3)首先得出DPC≌△BPC(SAS),進而利用相似三角形的判定得出FGC∽△PFB.

試題解析:(1)解:PEAD,PFDC,

四邊形EPFD是矩形,

AP=x,

AE=EP=DF=x,

DE=PF=FC=2﹣x,

S四邊形ABFE=4﹣EDDF﹣BCFC=x2+2;

(2)證明:如圖1,延長FP交AB于H,

PFDC,PEAD,

PFPE,PHHB,

BHP=90°,

四邊形ABCD是正方形,

AC平分DAB,

可得PF=FC=HB,EP=PH,

FPE與BHP中

∴△FPE≌△BHP(SAS),

∴∠PFE=PBH,

∵∠FPG=BPH,

∴△FPG∽△BPH,

∴∠FGP=BHP=90°,

即GBEF;

(3)證明:如圖2,連接PD,

GBEF,

∴∠BPF=CFG,

DPC和BPC中

,

∴△DPC≌△BPC(SAS),

PD=PB,

而PD=EF,EF=PB,

GBEF,

PF2=FGEF,

PF2=FGPB,

而PF=FC,

PFFC=FGPB,

,

①②FGC∽△PFB.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)的圖像分別交y軸、x軸交于點A、B,點P從點B出發(fā),沿射線BA以每秒1個單位的速度出發(fā),設(shè)點P的運動時間為t.

1)點P在運動過程中,若某一時刻,OPA的面積為6,求此時P的坐標;

2)在整個運動過程中,當t為何值時,AOP為等腰三角形?(只需寫出t的值,無需解答過程)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,有理數(shù) a,bc 分別對應(yīng)數(shù)軸上的點 A,B,C,a 2|b 4| 0 ,關(guān)于 x、y 的單項式3(c 3)x y yx 是同類項. 我們把數(shù)軸上兩點之間的距離用表示兩點的大寫字母一起標記,例如,點 A 與點 B 間的距離記作 AB.

(1) a,b,c 的值;

(2) P C 點出發(fā)以每秒 1 個單位長度在數(shù)軸上按以下規(guī)律往返運動:第一回合,從點 C 到點 B 到點 A 回到點 C;第二回合,從點 C BC 的中點 D CA 的中點 D1 回到點 C;第三回合,從點 C CD 的中點 D2 CD1 的中點 D3 回到點 C……,如此循環(huán)下去,若第 t 秒時滿足 PB+2PC=AC+1,求 t 的最大值;

(3)在(2)的條件下,P 點第一次從 C 點出發(fā)的同時,數(shù)軸上的動點 MN 分別從 A 點和 B 點向右運動,速度分別為每秒 1 個單位長度和每秒 2 個單位長度,P 點完成第一個回合后停止在 C 點,當 MP=2MN 時, t 的值是 (直接填答案)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在數(shù)軸上,點A對應(yīng)的數(shù)是-6,點B對應(yīng)的數(shù)是-2,點O對應(yīng)的數(shù)是0.動點P、Q分別從A、B同時出發(fā),以每秒3個單位,每秒1個單位的速度向右運動。在運動過程中,線段PQ的長度始終是另一線段長的整數(shù)倍,這條線段是(

A.PBB.OPC.OQD.QB

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,有一塊含30°角的直角三角板OAB的直角邊BO的長恰與另一塊等腰直角三角板ODC的斜邊OC的長相等,把這兩塊三角板放置在平面直角坐標系中,且OB=3.

(1)若某反比例函數(shù)的圖象的一個分支恰好經(jīng)過點A,求這個反比例函數(shù)的解析式;

(2)若把含30°角的直角三角板繞點O按順時針方向旋轉(zhuǎn)后,斜邊OA恰好落在x軸上,點A落在點A′處,試求圖中陰影部分的面積.(結(jié)果保留π)

【答案】(1)反比例函數(shù)的解析式為y=;(2)S陰影=6π-.

【解析】分析:(1)根據(jù)tan30°=,求出AB,進而求出OA,得出A的坐標,設(shè)過A的雙曲線的解析式是y=,把A的坐標代入求出即可;(2)求出∠AOA′,根據(jù)扇形的面積公式求出扇形AOA′的面積,求出OD、DC長,求出△ODC的面積,相減即可求出答案.

本題解析:

(1)在Rt△OBA中,∠AOB=30°,OB=3,

∴AB=OB·tan 30°=3.

∴點A的坐標為(3,3).

設(shè)反比例函數(shù)的解析式為y= (k≠0),

∴3,∴k=9,則這個反比例函數(shù)的解析式為y=.

(2)在Rt△OBA中,∠AOB=30°,AB=3,

sin ∠AOB=,即sin 30°=

∴OA=6.

由題意得:∠AOC=60°,S扇形AOA′=6π.

Rt△OCD中,∠DOC=45°,OC=OB=3

∴OD=OC·cos 45°=3×.

∴SODCOD2.

∴S陰影=S扇形AOA′-SODC=6π.

點睛:本題考查了勾股定理、待定系數(shù)法求函數(shù)解析式、特殊角的三角函數(shù)值、扇形的面積及等腰三角形的性質(zhì),本題屬于中檔題,難度不大,將不規(guī)則的圖形的面積表示成多個規(guī)則圖形的面積之和是解答本題的關(guān)鍵.

型】解答
結(jié)束】
26

【題目】矩形ABCD一條邊AD=8,將矩形ABCD折疊,使得點B落在CD邊上的點P處.

(1)如圖①,已知折痕與邊BC交于點O,連接AP,OP,OA.

① 求證:△OCP∽△PDA;

② 若△OCP與△PDA的面積比為1:4,求邊AB的長.

(2)如圖②,在(1)的條件下,擦去AO和OP,連接BP.動點M在線段AP上(不與點P,A重合),動點N在線段AB的延長線上,且BN=PM,連接MN交PB于點F,作ME⊥BP于點E.試問動點M,N在移動的過程中,線段EF的長度是否發(fā)生變化?若不變,求出線段EF的長度;若變化,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題解決:如圖1,△ABC中,AFBC邊上的中線,則SABF   SABC

問題探究:

1)如圖2,CD,BE分別是△ABC的中線,SBOCS四邊形ADOE相等嗎?

解:△ABC中,由問題解決的結(jié)論可得,SBCDSABC,SABESABC

SBCDSABE

SBCDSBODSABESBOD

SBOCS四邊形ADOE

2)圖2中,仿照(1)的方法,試說明SBODSCOE

3)如圖3,CD,BE,AF分別是△ABC的中線,則SBOC   SABCSAOE   SABC,SBOD   SABF

問題拓展:

4)①如圖4E、F分別為四邊形ABCD的邊AD、BC的中點,請直接寫出陰影部分的面積與四邊形ABCD的面積之間的數(shù)量關(guān)系:S陰影   S四邊形ABCD

②如圖5E、FG、H分別為四邊形ABCD的邊AD、BC、ABCD的中點,請直接寫出陰影部分的面積與四邊形ABCD的面積之間的數(shù)量關(guān)系:S陰影   S四邊形ABCD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在如圖的網(wǎng)格中,小正方形的邊長都是1,利用所學知識兩種解法求四邊形ABCD的面積,寫出完整求解過程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:在RtABC中,∠C=90°.

1)請在線段BC上作一點D,使點D到邊AC、AB的距離相等(要求:尺規(guī)作圖,不寫作法,保留作圖痕跡);

2)在(1)的條件下,若AC=6BC=8,請求出CD的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某片果園有果樹80棵,現(xiàn)準備多種一些果樹提高果園產(chǎn)量,但是如果多種樹,那么樹之間的距離和每棵樹所受光照就會減少,單棵樹的產(chǎn)量隨之降低,若該果園每棵果樹產(chǎn)果y千克,增種果樹x棵,它們之間的函數(shù)關(guān)系如圖所示.

(1)求y與x之間的函數(shù)解析式;

(2)在投入成本最低的情況下,增種果樹多少棵時,果園可以收獲果實6750千克?

(3)當增種果樹多少棵時,果園的總產(chǎn)量w(千克)最大?最大產(chǎn)量是多少?

查看答案和解析>>

同步練習冊答案