【題目】在平面直角坐標(biāo)系xOy中,拋物線經(jīng)過的三個頂點(diǎn),已知點(diǎn),的直角頂點(diǎn)Cy軸上.

如圖1,點(diǎn)D是拋物線第一象限內(nèi)上的一個動點(diǎn).

并直接寫出點(diǎn)C的坐標(biāo),并求拋物線的解析式;

當(dāng)動點(diǎn)D的坐標(biāo)是多少時,四邊形ABCD的面積最大?最大面積是多少?

如圖2,長度為1個單位長度的線段MN的邊AB上運(yùn)動,過M,N分別作AB的垂線交直角邊于P,Q兩點(diǎn).

在線段MN運(yùn)動過程中,若四邊形MNQP是矩形,求點(diǎn)M的坐標(biāo);

在線段MN運(yùn)動過程中,若以C、P、Q為頂點(diǎn)的三角形與相似,直接寫出點(diǎn)M的坐標(biāo).

【答案】,點(diǎn)D的坐標(biāo)是時,四邊形ABCD的面積最大,最大面積是點(diǎn)的坐標(biāo)為;M點(diǎn)的坐標(biāo)為

【解析】

利用射影定理計(jì)算得,則,再設(shè)交點(diǎn)式,然后把C點(diǎn)坐標(biāo)代入求出a即可得到拋物線解析式;

軸交BCE,如圖1,先利用待定系數(shù)法確定直線BC的解析式為,設(shè),則,則,利用二次函數(shù)的性質(zhì)得當(dāng)時,的最大值為,此時,然后計(jì)算對應(yīng)的四邊形ABCD的面積最大值;

易得AC的直線解析式為,設(shè),則,,,利用矩形性質(zhì)得,解方程求出t得到M點(diǎn)的坐標(biāo);

根據(jù)兩點(diǎn)間的距離公式得到,,利用相似三角形的判定方法當(dāng)時,,即;當(dāng)時,,即,然后分別解方程求出即可得到對應(yīng)的M點(diǎn)的坐標(biāo).

,,

,

,

設(shè)拋物線解析式為,

代入得,解得,

拋物線解析式為,

;

軸交BCE,如圖1,

設(shè)直線BC的解析式為,

,代入得,解得,

直線BC的解析式為

設(shè),則

,

當(dāng)時,的最大值為,此時

四邊形ABCD的面積最大值,

即動點(diǎn)D的坐標(biāo)是時,四邊形ABCD的面積最大,最大面積是;

易得AC的直線解析式為

設(shè),則,

四邊形MNQP是矩形,

,解得,

點(diǎn)的坐標(biāo)為;

,,,

當(dāng)時,,即,解得,此時;

當(dāng)時,,即,解得,此時;

綜上所述,M點(diǎn)的坐標(biāo)為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB=AC,點(diǎn)DBC的中點(diǎn),AB平分∠DAE,AEBE,垂足為E,連接DEAB于點(diǎn)F.

求證:1CD=BE;

2AB垂直平分DE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,A、C、F、D在同一直線上,AFDC,ABDE,ABDE.

求證:(1) △ABC≌△DEF;

(2)BCEF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場分兩次購進(jìn)A,B兩種商品進(jìn)行銷售,兩次購進(jìn)同一種商品的進(jìn)價(jià)相同,具體情況如表所示:

購進(jìn)數(shù)量

購進(jìn)所需費(fèi)用

A

B

第一次

30

20

2200

第二次

20

30

2800

A,B兩種商品每件的進(jìn)價(jià)分別是多少元?

商場決定A種商品以每件30元出售,B種商品以每件100元出售為滿足五一小長假期間市場需求,需購進(jìn)A,B兩種商品共1000件,且A種商品的數(shù)量不少于B種商品數(shù)量的4倍,請你求出獲利最大的進(jìn)貨方案,此時最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】3分)如圖,AD△ABC的角平分線,DE⊥AC,垂足為E,BF∥ACED的延長線于點(diǎn)F,若BC恰好平分∠ABF,AE=2BF.給出下列四個結(jié)論:①DE=DF;②DB=DC;③AD⊥BC④AC=3BF,其中正確的結(jié)論共有( )

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,DAB的中點(diǎn),過點(diǎn)AAE//BC與過點(diǎn)DCD的垂線交于點(diǎn)E.

1)如圖1,若CEAD于點(diǎn)F,BC=6∠B=30°,求AE的長;

2)如圖2,求證AE+CE=BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校開展了互助、平等、感恩、和諧、進(jìn)取主題班會活動,活動后,就活動的個主題進(jìn)行了抽樣調(diào)查(每位同學(xué)只選最關(guān)注的一個),根據(jù)調(diào)查結(jié)果繪制了兩幅不完整的統(tǒng)計(jì)圖.根據(jù)圖中提供的信息,解答下列問題:

(1)這次調(diào)查的學(xué)生共有多少名?

(2)請將條形統(tǒng)計(jì)圖補(bǔ)充完整,并在扇形統(tǒng)計(jì)圖中計(jì)算出進(jìn)取所對應(yīng)的圓心角的度數(shù).

(3)如果要在這個主題中任選兩個進(jìn)行調(diào)查,根據(jù)(2)中調(diào)查結(jié)果,用樹狀圖或列表法,求恰好選到學(xué)生關(guān)注最多的兩個主題的概率(將互助、平等、感恩、和諧、進(jìn)取依次記為A、B、C、D、E).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知中,點(diǎn)邊上,交邊于點(diǎn),且平分

(1)求證:;

(2)如圖2,在邊上取點(diǎn),使,若,,求的長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用一條直線分割一個三角形,如果能分割出等腰三角形,那么就稱這條直線為該三角形的一條等腰分割線.在直角三角形ABC中,∠C90°,AC8BC6

1)如圖(1),若 O AB 的中點(diǎn),則直線 OC_____ABC 的等腰分割線(填不是

2)如圖(2)已知ABC 的一條等腰分割線 BP 交邊 AC 于點(diǎn) P,且 PBPA,請求出 CP 的長度.

3)如圖(3),在ABC 中,點(diǎn) Q 是邊 AB 上的一點(diǎn),如果直線 CQ ABC 的等腰分割線,求線段BQ 的長度等于 ______.(直接寫出答案).

查看答案和解析>>

同步練習(xí)冊答案