【題目】如圖,一架2.5米長的梯子AB斜靠在豎直的墻AC上,這時(shí)B到墻底端C的距離為0.7米.如果梯子的頂端沿墻面下滑0.4米,那么點(diǎn)B將向左滑動(dòng)多少米?

【答案】點(diǎn)B將向左移動(dòng)0.8米.

【解析】

根據(jù)勾股定理即可求AC的長度,根據(jù)AC=AA1+CA1即可求得CA1的長度,在直角三角形A1B1C中,已知AB=A1B1,CA1即可求得CB2的長度,根據(jù)BB1=CB1-CB即可求得BB1的長度.

解:在△ABC中,∠C90°,

AC2BC2AB2,

AC20.722.52,

AC2.4

在△A1B1C中,∠C90°,

A1C2B1C2A1B12,

(2.4–0.4)2B1C 22.52,

B1C1.5

B1B1.5–0.70.8,即點(diǎn)B將向左移動(dòng)0.8米.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為實(shí)現(xiàn)區(qū)域教育均衡發(fā)展,我市計(jì)劃對某縣兩類薄弱學(xué)校全部進(jìn)行改造.根據(jù)預(yù)算,共需資金1575萬元.改造一所類學(xué)校和兩所類學(xué)校共需資金230萬元;改造兩所類學(xué)校和一所類學(xué)校共需資金205萬元.

1)改造一所類學(xué)校和一所類學(xué)校所需的資金分別是多少萬元?

2)若該縣的類學(xué)校不超過5所,則類學(xué)校至少有多少所?

3)我市計(jì)劃今年對該縣、兩類學(xué)校共6所進(jìn)行改造,改造資金由國家財(cái)政和地方財(cái)政共同承擔(dān).若今年國家財(cái)政撥付的改造資金不超過400萬元;地方財(cái)政投入的改造資金不少于70萬元,其中地方財(cái)政投入到、兩類學(xué)校的改造資金分別為每所10萬元和15萬元.請你通過計(jì)算求出有幾種改造方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖四邊形ABCD和四邊形OEFG都是正方形,點(diǎn)O是正方形ABCD兩對角線的交點(diǎn),已知AB=2,EF=3,正方形OEFG繞點(diǎn)O轉(zhuǎn)動(dòng),OE交BC上一點(diǎn)N,OG交CD上一點(diǎn)M.求四邊形OMCN的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為支援四川雅安地震災(zāi)區(qū),某市民政局組織募捐了240噸救災(zāi)物資,現(xiàn)準(zhǔn)備租用甲、乙兩種貨車,將這批救災(zāi)物資一次性全部運(yùn)往災(zāi)區(qū),它們的載貨量和租金如下表:


甲種貨車

乙種貨車

載貨量(噸/輛)

45

30

租金(元/輛)

400

300

如果計(jì)劃租用6輛貨車,且租車的總費(fèi)用不超過2300元,求最省錢的租車方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,AC=6,BC=8,DAB上不與AB重合的一個(gè)動(dòng)點(diǎn),過點(diǎn)D分別作DE⊥AC于點(diǎn)E,DF⊥BC于點(diǎn)F,則線段EF的最小值為(   )

A. 3 B. 4 C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了了解七年級學(xué)生體育測試成績情況,現(xiàn)從中隨機(jī)抽取部分學(xué)生的體育成績統(tǒng)計(jì)如下,其中右側(cè)扇形統(tǒng)計(jì)圖中的圓心角α36°,根據(jù)圖表中提供的信息,回答下列問題:

體育成績統(tǒng)計(jì)表

體育成績(分)

人數(shù)(人)

百分比(%)

26

8

16

27

12

24

28

15

29

n

30

(1)求樣本容量及n的值;

(2)已知該校七年級共有500名學(xué)生,如果體育成績達(dá)28分以上為優(yōu)秀,請估計(jì)該校七年級學(xué)生體育成績達(dá)到優(yōu)秀的總?cè)藬?shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖顯示了用計(jì)算機(jī)模擬隨機(jī)投擲一枚圖釘?shù)哪炒螌?shí)驗(yàn)的結(jié)果.

下面有三個(gè)推斷:

①當(dāng)投擲次數(shù)是500時(shí),計(jì)算機(jī)記錄釘尖向上的次數(shù)是308,所以釘尖向上的概率是0.616;

②隨著實(shí)驗(yàn)次數(shù)的增加,釘尖向上的頻率總在0.618附近擺動(dòng),顯示出一定的穩(wěn)定性,可以估計(jì)釘尖向上的概率是0.618;

③若再次用計(jì)算機(jī)模擬實(shí)驗(yàn),則當(dāng)投擲次數(shù)為1000時(shí),釘尖向上的概率一定是0.620.

其中合理的是(

A. B. C. ①② D. ①③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=﹣x2+bx+c的圖象與x軸交于A、B兩點(diǎn),與y軸交于C(0,3),A點(diǎn)在原點(diǎn)的左側(cè),B點(diǎn)的坐標(biāo)為(3,0).點(diǎn)P是拋物線上一個(gè)動(dòng)點(diǎn),且在直線BC的上方.

(1)求這個(gè)二次函數(shù)的表達(dá)式.

(2)連接PO、PC,并把△POC沿CO翻折,得到四邊形POP′C,那么是否存在點(diǎn)P,使四邊形POP′C為菱形?若存在,請求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請說明理由.

(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),四邊形 ABPC的面積最大,并求出此時(shí)點(diǎn)P的坐標(biāo)和四邊形ABPC的最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】完成下面推理過程:

如圖,已知∠B+BCD=180°,∠B=D.求證:∠E=DFE

證明:∵∠B+BCD=180°,

AB ( )

∴∠B=DCE( )

又∵∠B=D,

∴∠DCE=D( )

( )

∴∠E=DFE( )

查看答案和解析>>

同步練習(xí)冊答案