【題目】一般情況下,對于數(shù),(≠,不等號),但是對于某些特殊的數(shù),我們把這些特殊的數(shù),稱為“理想數(shù)對”,記作.例如當(dāng)時,有,那么就是“理想數(shù)對”.

(1)可以稱為“理想數(shù)對”的是 ;

(2)如果是“理想數(shù)對”,那么= ;

(3)理想數(shù)對,求的值.

【答案】(1);(2)-8;(3)-12.

【解析】

1)根據(jù)“理想數(shù)對”的規(guī)定進(jìn)行計算,然后求解;(2)根據(jù)題意列方程,然后求解;(3)根據(jù)理想數(shù)對,得到n=-4m,將原式化簡,然后代入求值即可.

解:(1),,即

,即

可以稱為“理想數(shù)對”;

故答案為:

(2)由題意可得:

解得:x=-8

故答案為:-8

(3)由題意,理想數(shù)對,所以,即n=-4m

n=-4m代入,

原式=-12

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算題:

1)(-14)-(-15 2 23×(1)×0.5.

3×(5)(用簡便方法計算) 4 1×(-48

5)(-10÷×2 +(-43; 6)-12(×[2(3)2]

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,OABCAC的中點(diǎn),ADBCBO的延長線于點(diǎn)D,連接DC,DB平分∠ADC,作DEBC,垂足為E

1)求證:四邊形ABCD為菱形;

2)若BD8,AC6,求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了調(diào)查市場上某品牌方便面的色素含量是否符合國家標(biāo)準(zhǔn),工作人員在超市里隨機(jī)抽取了某品牌的方便面進(jìn)行檢驗.圖1和圖2是根據(jù)調(diào)查結(jié)果繪制的兩幅不完整的統(tǒng)計圖,其中A、BC、D分別代表色素含量為0.05%以下、0.05%0.1%0.1%0.15%、0.15%以上,圖1的條形圖表示的是抽查的方便面中色素含量分布的袋數(shù),圖2的扇形圖表示的是抽查的方便面中色素的各種含量占抽查總數(shù)的百分比.請解答以下問題:

1)本次調(diào)查一共抽查了多少袋方便面?

2)將圖1中色素含量為B的部分補(bǔ)充完整;

3)圖2中的色素含量為D的方便面所占的百分比是多少?

4)若色素含量超過0.15%即為不合格產(chǎn)品,某超市這種品牌的方便面共有10000袋,那么其中不合格的產(chǎn)品有多少袋?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABC中,∠ACB=90°,∠CAB=30°,BC=2,O、H分別為邊AB、AC的中點(diǎn),將△ABC繞點(diǎn)B順時針旋轉(zhuǎn)120°到△A1BC1的位置,則整個旋轉(zhuǎn)過程中線段OH所掃過部分的面積(即陰影部分面積)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:

1)(-3+(-7

20++5

3)(-2.2++3.8

4

5)|-7│+│-9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某景區(qū)一電瓶小客車接到任務(wù)從景區(qū)大門出發(fā),向東走2千米到達(dá)A景區(qū),繼續(xù)向東走2.5千米到達(dá)B景區(qū),然后又回頭向西走8.5千米到達(dá)C景區(qū),最后回到景區(qū)大門.

(1)以景區(qū)大門為原點(diǎn),向東為正方向,以1個單位長表示1千米,建立如圖所示的數(shù)軸,請在數(shù)軸上表示出上述A、B、C三個景區(qū)的位置.

(2)A景區(qū)與C景區(qū)之間的距離是多少?

(3)若電瓶車充足一次電能行走15千米,則該電瓶車能否在一開始充足電而途中不充電的情況下完成此次任務(wù)?請計算說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在正方形中,點(diǎn)上一點(diǎn),連接,把沿折疊得到,延長,連接.

(1)的度數(shù).

(2)如圖,的中點(diǎn),連接.

①求證:;

②若正方形邊長為,求線段的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先閱讀下面的知識,后解答后面的問題:

探究:如圖,在△ABC中,已知∠B=∠C,求證:AB=AC.

證明:過點(diǎn)AADBC,垂足為D, 在△ABD與△ACD中,

B=∠C, , , 所以△ABD≌△ACD ),所以AB=AC.

1)完成上述證明中的空白;

2)已知如圖,在△ABC中,AC=BC,∠ACB=90°,AD平分∠CAB.試問:AC+CDAB相等嗎?說明理由.

查看答案和解析>>

同步練習(xí)冊答案