如圖,△ABC中,D為AC上一點(diǎn),∠C=72゜,∠A=∠DBC=36゜,則圖中共有
3
3
個(gè)等腰三角形.
分析:由∠C=72゜,∠A=∠DBC=36゜,根據(jù)三角形內(nèi)角和定理與三角形外角的性質(zhì),可求得∠ABD=∠A=36°,∠ABC=∠BCD=∠BDC=72°,繼而求得答案.
解答:解:∵∠C=72゜,∠A=∠DBC=36゜,
∴∠BDC=180°-∠DBC-∠C=72°=∠C,
∴BC=BD,即△BCD是等腰三角形;
∴∠ABD=∠BDC-∠A=36°=∠A,
∴AD=BD,即△ABD是等腰三角形;
∴∠ABC=∠ABD+∠DBC=72°=∠C,
∴AB=AC,即△ABC是等腰三角形.
故答案為:3.
點(diǎn)評:此題考查了等腰三角形的判定、三角形的外角的性質(zhì)以及三角形內(nèi)角和定理.此題難度不大,注意掌握數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

26、已知:如圖,△ABC中,點(diǎn)D在AC的延長線上,CE是∠DCB的角平分線,且CE∥AB.
求證:∠A=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點(diǎn)在直線BC上,連接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求證:∠ANM=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知,如圖,△ABC中,點(diǎn)D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度數(shù);
(2)若畫∠DAC的平分線AE交BC于點(diǎn)E,則AE與BC有什么位置關(guān)系,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案