(1)在平面直角坐標(biāo)系中,畫出y=x2+2x-3的圖象;并利用圖象回答(2)(3);
(2)方程x2+2x-3=0的解是______(直接寫出答案);
(3)x取什么值時,函數(shù)值y小于0.

【答案】分析:(1)通過列表、描點、連線得到y(tǒng)=x2+2x-3的圖象;
(2)找出拋物線y=x2+2x-3與x軸的交點的橫坐標(biāo)即為方程x2+2x-3=0的解;
(3)觀察圖象得到拋物線在x軸下方的部分所對應(yīng)的自變量的范圍為-3<x<1.
解答:解:(1)列表,描點如圖,
(2)x1=-3,x2=1;
(3)-3<x<1.
點評:本題考查了二次函數(shù)的圖象:二次函數(shù)y=ax2+bx+c(a≠0)的圖象為拋物線,當(dāng)a>0,拋物線開口向上;當(dāng)a<0,拋物線開口方向向下.也考查了拋物線與x軸的交點.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,點P不與點0、點A重合.連接CP,過點P作PD交AB于點D.
(1)求點B的坐標(biāo);
(2)當(dāng)點P運動什么位置時,△OCP為等腰三角形,求這時點P的坐標(biāo);
(3)當(dāng)點P運動什么位置時,使得∠CPD=∠OAB,且
BD
BA
=
5
8
,求這時點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖(1),在平面直角坐標(biāo)xOy中,邊長為2的等邊△OAB的頂點B在第一象限,頂點A在x軸的正半軸上.另一等腰△OCA的頂點C在第四象限,OC=AC,∠C=120°.現(xiàn)有兩動點P、Q分別從A、O兩點同時出發(fā),點Q以每秒1個單位的速度沿OC向點C運動,點P以每秒3個單位的速度沿A→O→B運動,當(dāng)其中一個點到達終點時,另一個點也隨即停止.
(1)求在運動過程中形成的△OPQ的面積S與運動的時間t之間的函數(shù)關(guān)系,并寫出自變量t的取值范圍;
(2)在等邊△OAB的邊上(點A除外)存在點D,使得△OCD為等腰三角形,請直接寫出所有符合條件的點D的坐標(biāo);
(3)如圖(2),現(xiàn)有∠MCN=60°,其兩邊分別與OB、AB交于點M、N,連接MN.將∠MCN繞著C點旋轉(zhuǎn)(0°<旋轉(zhuǎn)角<60°),使得M、N始終在邊OB和邊AB上.試判斷在這一過程中,△BMN的周長是否發(fā)生變化?若沒有變化,請求出其周長;若發(fā)生變化,請說明理由.
精英家教網(wǎng)精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,以(5,1)為圓心,以2個單位長度為半徑的⊙A交x軸于點B、C,
(1)將⊙A向左平移
3
3
個單位長度與y軸首次相切得到⊙A′,此時點A′的坐標(biāo)為
(2,1)
(2,1)
,陰影部分的面積S=
6
6
;
(2)BC=
2
3
2
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)中,邊長為1的正方形OABC的兩頂點A、C分別在y軸、x軸的正半軸上,點O在原點.現(xiàn)將正方形OABC繞O點順時針旋轉(zhuǎn),當(dāng)A點第一次落在直線y=x上時停止旋轉(zhuǎn).旋轉(zhuǎn)過程中,AB邊交直線y=x于點M,BC邊交x軸于點N(如圖1).
(1)求邊AB在旋轉(zhuǎn)過程中所掃過的面積;
(2)設(shè)△MBN的周長為p,在旋轉(zhuǎn)正方形OABC的過程中,p值是否有變化?請證明你的結(jié)論;
(3)設(shè)MN=m,當(dāng)m為何值時△OMN的面積最小,最小值是多少?并直接寫出此時△BMN內(nèi)切圓的半徑.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點坐標(biāo)為(8,0),D點坐標(biāo)為(0,6),則AC長為
10
10

查看答案和解析>>

同步練習(xí)冊答案