【題目】如圖,拋物線y=ax-2ax-3a(a<0)與x軸交于A、B兩點(diǎn)(A在B的左側(cè)),與y軸交于點(diǎn)C,拋物線的對稱軸與拋物線交于點(diǎn)P,與直線BC交于點(diǎn)M,且PM= AB.
(1)求拋物線的解析式;
(2)點(diǎn)K是x軸正半軸上一點(diǎn),點(diǎn)A、P關(guān)于點(diǎn)K的對稱點(diǎn)分別為 、 ,連接 、 ,若 ,求點(diǎn)K的坐標(biāo);
(3)矩形ADEF的邊AF在x軸負(fù)半軸上,邊AD在第二象限,AD=2,DE=3.將矩形ADEF沿x軸正方向平移t(t>0)個單位,直線AD、EF分別交拋物線于G、H.問:是否存在實(shí)數(shù)t,使得以點(diǎn)D、F、G、H為頂點(diǎn)的四邊形是平行四邊形?若存在,求出t的值;若不存在,說明理由.
【答案】
(1)
解:由拋物線y=ax-2ax-3a可得它的頂點(diǎn)坐標(biāo)為(1,-4a).
當(dāng)x=0時,y=3a,則C(0,-3a)
當(dāng)y=0時,
則ax-2ax-3a=0,則x1=-1,x2=3.
則A(-1,0),B(3,0).
即AB=4.
由B(3,0)和C(0,-3a)可得直線BC的解析式為y=ax-3a,
則M(1,-2a),
則pM=-2a=2,即a=-1,
所以拋物線的解析式為y=-x+2x+3.
(2)
解:如圖,連接KP1,設(shè)K(m,0),m>0,
則P1(2m-1,4),A1(2m+1,0),
當(dāng) P1A⊥P1A1時,KP1=AK,
則(2m-1-m)2+42=(m+1)2,
解得m=4.
則K(4,0).
(3)
解:由題可得DG//FH,當(dāng)DG=FH時,以點(diǎn)D、F、G、H為頂點(diǎn)的四邊形是平行四邊形.
因?yàn)镚是直線AD與拋物線的交點(diǎn),則G(-1+t,-(-1+t)2+2(-1+t)+3),即(-1+t,-t2+4t)
同理H(-4+t,-(-4+t)2+2(-4+t)+3),即H(-4+t,-t2+10t-21),
則DG=|2-(-t2+4t)|=|t2-4t+2|,
FH=|-t2+10t-21|,
當(dāng)DG=FH時,
則t2-4t+2=-t2+10t-21或t2-4t+2=-(-t2+10t-21),
解得t=或t=,
【解析】(1)由拋物線y=ax-2ax-3a可分別求出點(diǎn)P,C,B,A的坐標(biāo),則可求出AB的值,求出BC的解析式,從而得到點(diǎn)M的坐標(biāo),PM的長度,由PM=AB,可求得a;
(2)根據(jù)對稱的性質(zhì)得到點(diǎn)P1的坐標(biāo),由當(dāng) P1A⊥P1A1時,KP1=AK,列方程解出m即可;
(3)由題可得DG//FH,當(dāng)DG=FH時,以點(diǎn)D、F、G、H為頂點(diǎn)的四邊形是平行四邊形,則分別求出DG和FH的值,列方程即可解得.
【考點(diǎn)精析】本題主要考查了二次函數(shù)的圖象和二次函數(shù)的性質(zhì)的相關(guān)知識點(diǎn),需要掌握二次函數(shù)圖像關(guān)鍵點(diǎn):1、開口方向2、對稱軸 3、頂點(diǎn) 4、與x軸交點(diǎn) 5、與y軸交點(diǎn);增減性:當(dāng)a>0時,對稱軸左邊,y隨x增大而減;對稱軸右邊,y隨x增大而增大;當(dāng)a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為提高節(jié)水意識,小申隨機(jī)統(tǒng)計了自己家7天的用水量,并分析了第3天的用水情況,將得到的數(shù)據(jù)進(jìn)行整理后,繪制成如圖所示的統(tǒng)計圖.(單位:升)
(1)求這7天內(nèi)小申家每天用水量的平均數(shù)和中位數(shù);
(2)求第3天小申家洗衣服的水占這一天總用水量的百分比;
(3)請你根據(jù)統(tǒng)計圖中的信息,給小申家提出一條全理的節(jié)約用水建議,并估算采用你的建議后小申家一個月(按30天計算)的節(jié)約用水量.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)y= (x>0)的圖像交矩形OABC的邊AB于點(diǎn)D,交邊BC于點(diǎn)E,且BE=2EC.若四邊形ODBE的面積為6,則k=.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P為正方形ABCD的邊BC上一動點(diǎn)(P與B、C不重合),點(diǎn)Q在CD邊上,且BP=CQ,連接AP、BQ交于點(diǎn)E,將△BQC沿BQ所在直線對折得到△BQN,延長QN交BA的延長線于點(diǎn)M.
(1)求證:AP⊥BQ;
(2)若AB=3,BP=2PC,求QM的長;
(3)當(dāng)BP=m,PC=n時,求AM的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以Rt△ABC的直角邊AB為直徑作⊙O,交斜邊AC于點(diǎn)D,點(diǎn)E為OB的中點(diǎn),連接CE并延長交⊙O于點(diǎn)F,點(diǎn)F恰好落在 的中點(diǎn),連接AF并延長與CB的延長線相交于點(diǎn)G,連接OF.
(1)求證:OF= BG;
(2)若AB=4,求DC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點(diǎn)D為邊BC的中點(diǎn),過點(diǎn)A作射線AE,過點(diǎn)C作CF⊥AE于點(diǎn)F,過點(diǎn)B作BG⊥AE于點(diǎn)G,連接FD并延長,交BG于點(diǎn)H.
(1)求證:DF=DH;
(2)若∠CFD=120°,求證:△DHG為等邊三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:△ABC是等腰直角三角形.∠A=90°,CE平分∠ACB交AB于點(diǎn)E.
(1)如圖1,若點(diǎn)D在斜邊BC上,DM垂直平分BE,垂足為M.求證:BD=AE.
(2)如圖2,過點(diǎn)B作BF⊥CE交CE的延長線于點(diǎn)F.若CE=6,求△BEC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax+bx+c的圖像如圖所示,則代數(shù)式(a+b)-c的值( ).
A.大于0
B.等于0
C.小于0
D.不確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,菱形ABCD中,AB=10cm,BD=12cm,對角線AC與BD相交于點(diǎn)O,直線MN以1cm/s從點(diǎn)D出發(fā),沿DB方向勻速運(yùn)動,運(yùn)動過程中始終保持MN⊥BD,垂足是點(diǎn)P,過點(diǎn)P作PQ⊥BC,交BC于點(diǎn)Q.(0<t<6)
(1)求線段PQ的長;(用含t的代數(shù)式表示)
(2)設(shè)△MQP的面積為y(單位:cm2),求y與t的函數(shù)關(guān)系式;
(3)是否存在某時刻t,使線段MQ恰好經(jīng)過點(diǎn)O?若存在求出此時t的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com