【題目】如圖,平行四邊形ABCD的頂點A(﹣2,3),B(﹣3,1),C(0,1),規(guī)定“平行四邊形ABCD先沿x軸翻折,再向左平移1個單位”為一次變換,則連續(xù)經過2017次變換后,平行四邊形ABCD的對角線的交點M的坐標為( )
A.(﹣2017,2)
B.(﹣2017,﹣2)
C.(﹣2018,﹣2)
D.(﹣2018,2)
科目:初中數學 來源: 題型:
【題目】如圖所示,將△ABC平移到△A′B′C′的位置,連接BB′,AA′,CC′,平移的方向是點______到點________的方向,平移的距離是線段______的長度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,拋物線y=ax2﹣5ax+4a與x軸交于A、B(A點在B點的左側)與y軸交于點C.
(1)如圖1,連接AC、BC,若△ABC的面積為3時,求拋物線的解析式;
(2)如圖2,點P為第四象限拋物線上一點,連接PC,若∠BCP=2∠ABC時,求點P的橫坐標;
(3)如圖3,在(2)的條件下,點F在AP上,過點P作PH⊥x軸于H點,點K在PH的延長線上,AK=KF,∠KAH=∠FKH,PF=﹣4 a,連接KB并延長交拋物線于點Q,求PQ的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小明不小心把一塊三角形形狀的玻璃打碎成了三塊,如圖①②③,他想要到玻璃店去配一塊大小形狀完全一樣的玻璃,你認為應帶( 。
A. ① B. ② C. ③ D. ①和②
【答案】C
【解析】試題分析:根據全等三角形的判定方法帶③去可以利用“角邊角”得到全等的三角形.
故選C.
考點:全等三角形的應用.
【題型】單選題
【結束】
12
【題目】如圖,要測量池塘的寬度AB,在池塘外選取一點P,連接AP、BP并各自延長,使PC=PA,PD=PB,連接CD,測得CD長為25m,則池塘寬AB為________m,依據是________
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某工廠接受了20天內生產1200臺GH型電子產品的總任務.已知每臺GH型產品由4個G型裝置和3個H型裝置配套組成.工廠現有80名工人,每個工人每天能加工6個G型裝置或3個H型裝置.工廠將所有工人分成兩組同時開始加工,每組分別加工一種裝置,并要求每天加工的G、H型裝置數量正好全部配套組成GH型產品.
(1)按照這樣的生產方式,工廠每天能配套組成多少套GH型電子產品?請列出二元一次方程組解答此問題.
(2)為了在規(guī)定期限內完成總任務,工廠決定補充一些新工人,這些新工人只能獨立進行G型裝置的加工,且每人每天只能加工4個G型裝置.1.設原來每天安排x名工人生產G型裝置,后來補充m名新工人,求x的值(用含m的代數式表示)2.請問至少需要補充多少名新工人才能在規(guī)定期內完成總任務?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,A、B坐標為(6,0)、(0,6),P為線段AB上的一點
(1) 如圖1,若S△AOP=12,求P的坐標
(2) 如圖2,若P為AB的中點,點M、N分別是OA、OB邊上的動點,點M從頂點A、點N從頂點O同時出發(fā),且它們的速度都為1 cm/s,則在M、N運動的過程中,線段PM、PN之間有何關系?并證明
(3) 如圖3,若P為線段AB上異于A、B的任意一點,過B點作BD⊥OP,交OP、OA分別與F、D兩點,E為OA上一點,且∠PEA=∠BDO,試判斷線段OD與AE的數量關系,并說明理由
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是半圓O的直徑,點C是半圓O上一點,∠COB=60°,點D是OC的中點,連接BD,BD的延長線交半圓O于點E,連接OE,EC,BC.
(1)求證:△BDO≌△EDC.
(2)若OB=6,則四邊形OBCE的面積為 .
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com