【題目】在△ABC中,AB=AC=10,cosB= ,如果圓O的半徑為2 ,且經過點B、C,那么線段AO的長等于 .
科目:初中數學 來源: 題型:
【題目】如圖,數軸上點 A、B 到表示-2 的點的距離都為 6,P 為線段 AB 上任一點,C,D 兩點分別從 P,B 同時向 A 點移動,且 C 點運動速度為每秒 2 個單位長度,D 點運動速度 為每秒 3 個單位長度,運動時間為 t 秒.
(1)A 點表示數為 ,B 點表示的數為 ,AB= .
(2)若 P 點表示的數是 0,
①運動 1 秒后,求 CD 的長度;
②當 D 在 BP 上運動時,求線段 AC、CD 之間的數量關系式.
(3)若 t=2 秒時,CD=1,請直接寫出 P 點表示的數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2.將△ABC繞點C按順時針方向旋轉n度后得到△EDC,此時點D落在AB邊上,斜邊DE交AC于點F,則n的大小和圖中陰影部分的面積分別為( )
A. 30,2 B. 60,2 C. 60, D. 60,
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一個大矩形按如圖方式分割成九個小矩形,且只有標號為①和②的兩個小矩形為正方形.在滿足條件的所有分割中,若知道九個小矩形中n個小矩形的周長,就一定能算出這個在大矩形的面積,則n的最小值是 ( )
A.3
B.4
C.5
D.6
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABCD的邊長AD=3,AB=2,E為AB的中點,F在邊BC上,且BF=2FC,AF分別與DE、DB相交于點M,N,則MN的長為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知點O到△ABC的兩邊AB,AC所在直線的距離相等,且OB=OC.
(1)如圖①,若點O在邊BC上,求證:AB=AC;
(2)如圖②,若點O在△ABC的內部,求證:AB=AC;
(3)若點O在△ABC的外部,AB=AC成立嗎?請畫圖表示.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩工程隊承包一項工程,如果甲工程隊單獨施工,恰好如期完成;如果乙工程隊單獨施工就要超過6個月才能完成,現在甲、乙兩隊先共同施工4個月,剩下的由乙隊單獨施工,則恰好如期完成.
(1)問原來規(guī)定修好這條公路需多少長時間?
(2)現要求甲、乙兩個工程隊都參加這項工程,但由于受到施工場地條件限制,甲、乙兩工程隊不能同時施工.已知甲工程隊每月的施工費用為4萬元,乙工程隊每月的施工費用為2萬元.為了結算方便,要求:甲、乙的施工時間為整數個月,不超過15個月完成.當施工費用最低時,甲、乙各施工了多少個月?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校需要招聘一名教師,對三名應聘者進行了三項素質測試下面是三名應聘者的綜合測試成績:
應聘者 成績 項目 | A | B | C |
基本素質 | 70 | 65 | 75 |
專業(yè)知識 | 65 | 55 | 50 |
教學能力 | 80 | 85 | 85 |
(1)如果根據三項測試的平均成績確定錄用教師,那么誰將被錄用?
(2)學校根據需要,對基本素質、專業(yè)知識、教學能力的要求不同,決定按2:1:3的比例確定其重要性,那么哪一位會被錄用?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知點A(﹣2,﹣4),直線x=﹣2與x軸相交于點B,連接OA,拋物線y=﹣x2從點O沿OA方向平移,與直線x=﹣2交于點P,頂點M到點A時停止移動.
(1)線段OA所在直線的函數解析式是;
(2)設平移后拋物線的頂點M的橫坐標為m,問:當m為何值時,線段PA最長?并求出此時PA的長.
(3)若平移后拋物線交y軸于點Q,是否存在點Q使得△OMQ為等腰三角形?若存在,請求出點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com