【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),菱形OABC的頂點(diǎn)Ax軸的正半軸上,頂點(diǎn)C的坐標(biāo)為(1,).

(1)求圖象過點(diǎn)B的反比例函數(shù)的解析式;

(2)求圖象過點(diǎn)A,B的一次函數(shù)的解析式;

(3)在第一象限內(nèi),當(dāng)以上所求一次函數(shù)的圖象在所求反比例函數(shù)的圖象下方時(shí),請(qǐng)直接寫出自變量x的取值范圍.

【答案】(1);(2);(3)x<﹣10<x<3.

【解析】(1)由點(diǎn)C的坐標(biāo)求出菱形的邊長(zhǎng),利用平移規(guī)律確定出B的坐標(biāo),再利用待定系數(shù)法求出反比例函數(shù)解析式即可;

(2)由菱形的邊長(zhǎng)確定出點(diǎn)A坐標(biāo),利用待定系數(shù)法求出直線AB的解析式即可;

(3)聯(lián)立一次函數(shù)與反比例函數(shù)解析式求出交點(diǎn)坐標(biāo),由圖象確定出滿足題意的x的范圍即可.

1)由點(diǎn)C的坐標(biāo)為(1,),得到OC=2,

∵四邊形OABC是菱形,

BC=OC=OA=2,BCx軸,

B(3,),

設(shè)反比例函數(shù)解析式為y=,

B坐標(biāo)代入得:k=3

則反比例函數(shù)解析式為y=;

(2)設(shè)直線AB的解析式為y=mx+n,

A(2,0),B(3,)代入得:

解得:

則直線AB的解析式為y=x﹣2;

(3)聯(lián)立得:,

解得:,即一次函數(shù)與反比例函數(shù)圖象的交點(diǎn)坐標(biāo)為(3,)或(﹣1,﹣3),

則當(dāng)一次函數(shù)的圖象在反比例函數(shù)的圖象下方時(shí),自變量x的取值范圍為x<﹣10<x<3.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線與坐標(biāo)軸分別交于點(diǎn)、和點(diǎn),動(dòng)點(diǎn)從原點(diǎn)開始沿方向以每秒個(gè)單位長(zhǎng)度移動(dòng),動(dòng)點(diǎn)從點(diǎn)開始沿方向以每秒個(gè)單位長(zhǎng)度移動(dòng),動(dòng)點(diǎn)、同時(shí)出發(fā),當(dāng)動(dòng)點(diǎn)到達(dá)原點(diǎn)時(shí),點(diǎn)停止運(yùn)動(dòng).

直接寫出拋物線的解析式:________;

的面積點(diǎn)運(yùn)動(dòng)時(shí)間的函數(shù)解析式;當(dāng)為何值時(shí),的面積最大?最大面積是多少?

當(dāng)的面積最大時(shí),在拋物線上是否存在點(diǎn)(點(diǎn)除外),使的面積等于的最大面積?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某班男同學(xué)身高情況如下表,則其中數(shù)據(jù)167cm

身高(cm)

170

169

168

167

166

165

164

163

人數(shù)()

1

2

5

8

6

3

3

2

A.是平均數(shù)B.是眾數(shù)但不是中位數(shù).

C.是中位數(shù)但不是眾數(shù)D.是眾數(shù)也是中位數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在讀數(shù)月活動(dòng)中學(xué)校準(zhǔn)備購(gòu)買一批課外讀物,為使課外讀物滿足同學(xué)們的需求,學(xué)校就“我最喜愛的課外讀物”從文學(xué)、藝術(shù)、科普和其他四個(gè)類別進(jìn)行了抽樣調(diào)查(每位同學(xué)只選一類)。下圖是根據(jù)調(diào)查結(jié)果繪制的兩幅不完整的統(tǒng)計(jì)圖。

請(qǐng)你根據(jù)統(tǒng)計(jì)圖提供的信息,解答下列問題:

1)本次調(diào)查中,一共調(diào)查了 名同學(xué);

2)條形統(tǒng)計(jì)圖中

3)扇形統(tǒng)計(jì)圖中,藝術(shù)類讀數(shù)所在扇形的圓心角是 度;

4)學(xué)校計(jì)劃購(gòu)買課外讀物8000冊(cè),請(qǐng)根據(jù)樣本數(shù)據(jù),估計(jì)學(xué)校購(gòu)買其他類讀數(shù)多少冊(cè)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)方法感悟:如圖①,在正方形ABCD中,點(diǎn)E、F分別為DC、BC邊上的點(diǎn),且滿足EAF=45°,連接EF.將ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到ABG,易證GAFEAF,從而得到結(jié)論:DE+BF=EF.根據(jù)這個(gè)結(jié)論,若CD6,DE2,求EF的長(zhǎng).

2)方法遷移:如圖②,若在四邊形ABCD中,AB=AD,B+D=180°E、F分別是BCCD上的點(diǎn),且EAF=BAD,試猜想DE,BF,EF之間有何數(shù)量關(guān)系,證明你的結(jié)論.

3)問題拓展:如圖③,在四邊形ABCD中,AB=AD,∠B+ADC=180°,E、F分別是邊BC、CD延長(zhǎng)線上的點(diǎn),且EAF=BAD,試探究線段EF、BE、FD之間的數(shù)量關(guān)系,請(qǐng)直接寫出你的猜想(不必說明理由).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2019年是中華人民共和國(guó)成立70周年,某校將開展愛我中華,了解歷史為主題的知識(shí)競(jìng)賽,八年級(jí)某老師為了解所任教的甲,乙兩班學(xué)生相關(guān)知識(shí)的掌握情況,對(duì)兩個(gè)班的學(xué)生進(jìn)行了中國(guó)歷史知識(shí)檢測(cè),滿分為100.現(xiàn)從兩個(gè)班分別隨機(jī)抽取了20名學(xué)生的檢測(cè)成績(jī)進(jìn)行整理、描述和分析,下面給出了部分信息:(成績(jī)得分用x表示,共分為五組,A:0≤x80,B:80≤x85,C:85≤x90,D:90≤x95,E:95≤x≤100)

甲班20名學(xué)生的成績(jī)?yōu)?/span>:

8285,9673,91,99,8791,8691

87, 94,89, 96,9691,100,93,94, 99

乙班20名學(xué)生的成績(jī)?cè)?/span>D組中的數(shù)據(jù)是:91,92,92,92,92,93,94

甲,乙兩班抽取的學(xué)生成績(jī)數(shù)據(jù)統(tǒng)計(jì)表:

根據(jù)以上信息,解答下列問題:

(1)請(qǐng)直接寫出上述統(tǒng)計(jì)表中a,b的值:a= ,b= ;

(2)若甲,乙兩班總?cè)藬?shù)為120名,且都參加了此次知識(shí)檢測(cè),若規(guī)定成績(jī)得分x≥95為優(yōu)秀,請(qǐng)估計(jì)此次檢測(cè)成績(jī)優(yōu)秀的學(xué)生人數(shù)是多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,∠ACB90°,OC2BO,AC6,點(diǎn)B的坐標(biāo)為(1,0),拋物線y=﹣x2+bx+c經(jīng)過A、B兩點(diǎn).

1)求點(diǎn)A的坐標(biāo);

2)求拋物線的解析式;

3)點(diǎn)P是直線AB上方拋物線上的一點(diǎn),過點(diǎn)PPD垂直x軸于點(diǎn)D,交線段AB于點(diǎn)E,使PEDE

①求點(diǎn)P的坐標(biāo);

②在直線PD上是否存在點(diǎn)M,使△ABM為直角三角形?若存在,求出符合條件的所有點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明在解決問題:已知a,求2a28a1的值,他是這樣分析與解答的:

因?yàn)?/span>a2,

所以a2=-.

所以(a2)23,即a24a43.

所以a24a=-1.

所以2a28a12(a24a)12×(1)1=-1.

請(qǐng)你根據(jù)小明的分析過程,解決如下問題:

(1)計(jì)算: = .

(2)計(jì)算:;

(3)a,求4a28a1的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知等邊三角形ABC,點(diǎn)D為線段BC上一點(diǎn),以線段DB為邊向右側(cè)作DEB,使DECD,若∠ADB,∠BDE=(1802m°,則∠DBE的度數(shù)是( 。

A.m60°B.1802m°C.2m90°D.120m°

查看答案和解析>>

同步練習(xí)冊(cè)答案