△ABC中,AC=5,AB=7,則中線AD的取值范圍是


  1. A.
    2<AD<12
  2. B.
    4<AD<24
  3. C.
    5<AD<19
  4. D.
    1<AD<6
D
分析:先作輔助線,延長AD至點E,使DE=AD,連接EC,先證明△ABD≌△ECD,在△AEC中,由三角形的三邊關(guān)系定理得出答案.
解答:延長AD至點E,使DE=AD,連接EC,

在△ABD與△ECD中,
,
∴△ABD≌△ECD(SAS),
∴CE=AB,
∵AB=7,AC=5,CE=7,
設(shè)AD=x,則AE=2x,
∴2<2x<12,
∴1<x<6,
∴1<AD<6.
故選D.
點評:此題主要考查學(xué)生對三角形三邊關(guān)系及中線的性質(zhì)等的理解及運(yùn)用能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AC>BC,D是AC邊上一點,連接BD.
(1)要使△CBD∽△CAB,還需要補(bǔ)充一個條件是
 
;(只要求填一個)
(2)若△CBD∽△CAB,且AD=2,BC=
3
,求CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

操作:在△ABC中,AC=BC=2,∠C=90°,將一塊等腰直角三角板的直角頂點放在斜邊AB的中點P處,將三角板繞點P旋轉(zhuǎn),三角板的兩直角邊分別交射線AC、CB于D、E兩點.圖1,2,3是旋轉(zhuǎn)三角板得到的圖形中的3種情況.
研究:
(1)三角板繞點P旋轉(zhuǎn),觀察線段PD和PE之間有什么數(shù)量關(guān)系,并結(jié)合圖2加以證明;
(2)三角板繞點P旋轉(zhuǎn),△PBE是否能成為等腰三角形?若能,指出所有情況(即寫出△PBE為等腰三角形時CE的長);若不能,請說明理由;
(3)若將三角板的直角頂點放在斜邊AB上的M處,且AM:MB=1:3,和前面一樣操作,試問線段MD和ME之間有什么數(shù)量關(guān)系?并結(jié)合圖4加以證明.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:在△ABC中AB=AC,點D為BC邊的中點,點F是AB邊上一點,點E在線段DF的延長線上,∠BAE=∠BDF,點M在線段DF上,
∠ABE=∠DBM.
(1)如圖1,當(dāng)∠ABC=45°時,求證:AE=
2
MD;
(2)如圖2,當(dāng)∠ABC=60°時,則線段AE、MD之間的數(shù)量關(guān)系為
AE=2MD
AE=2MD

(3)在(2)的條件下延長BM到P,使MP=BM,連接CP,若AB=7,AE=2
7
,求tan∠PCB和tan∠ACP的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,AC=24cm,BC=7cm,P點在BC上,從B點到C點運(yùn)動(不包括C點),點P運(yùn)動的速度為2cm/s;Q點在AC上從C點運(yùn)動到A點(不包括A點),速度為5cm/s.若點P、Q分別從B、C同時運(yùn)動,且運(yùn)動時間記為t秒,請解答下面的問題,并寫出探索的主要過程.
(1)當(dāng)t為何值時,P、Q兩點的距離為5
2
cm?
(2)當(dāng)t為何值時,△PCQ的面積為15cm2
(3)請用配方法說明,點P運(yùn)動多少時間時,四邊形BPQA的面積最。孔钚∶娣e是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:在△ABC中,AC=BC,∠ACB=90°,點D是AB的中點,點E是AB邊上一點.
(1)求證:△ACD≌△BCD;
(2)求∠A;
(3)直線BF垂直于直線CE于點F,交CD于點G(如圖1),求證:AE=CG;
(4)直線AH垂直于直線CE,垂足為點H,交CD的延長線于點M(如圖2),找出圖中與BE相等的線段,并證明.

查看答案和解析>>

同步練習(xí)冊答案