【題目】如圖,PA、PB是⊙O的切線,切點(diǎn)分別為A、B,若OA=2,∠P=60°,則 的長為(
A. π
B.π
C.
D.

【答案】C
【解析】解:∵PA、PB是⊙O的切線, ∴∠OBP=∠OAP=90°,
在四邊形APBO中,∠P=60°,
∴∠AOB=120°,
∵OA=2,
的長l= = π,
故選C
【考點(diǎn)精析】通過靈活運(yùn)用切線的性質(zhì)定理和弧長計(jì)算公式,掌握切線的性質(zhì):1、經(jīng)過切點(diǎn)垂直于這條半徑的直線是圓的切線2、經(jīng)過切點(diǎn)垂直于切線的直線必經(jīng)過圓心3、圓的切線垂直于經(jīng)過切點(diǎn)的半徑;若設(shè)⊙O半徑為R,n°的圓心角所對的弧長為l,則l=nπr/180;注意:在應(yīng)用弧長公式進(jìn)行計(jì)算時(shí),要注意公式中n的意義.n表示1°圓心角的倍數(shù),它是不帶單位的即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從﹣2,1,3這三個數(shù)中任取兩個不同的數(shù),作為點(diǎn)的坐標(biāo).
(1)寫出該點(diǎn)所有可能的坐標(biāo);
(2)求該點(diǎn)在第一象限的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為8的正方形ABCD中,點(diǎn)O為AD上一動點(diǎn)(4<OA<8),以O(shè)為圓心,OA的長為半徑的圓交邊CD于點(diǎn)M,連接OM,過點(diǎn)M作⊙O的切線交邊BC于N.

(1)求證:△ODM∽△MCN;
(2)設(shè)DM=x,求OA的長(用含x的代數(shù)式表示);
(3)在點(diǎn)O的運(yùn)動過程中,設(shè)△CMN的周長為P,試用含x的代數(shù)式表示P,你能發(fā)現(xiàn)怎樣的結(jié)論?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,扇形OAB中,∠AOB=60°,扇形半徑為4,點(diǎn)C在 上,CD⊥OA,垂足為點(diǎn)D,當(dāng)△OCD的面積最大時(shí),圖中陰影部分的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】同慶中學(xué)為豐富學(xué)生的校園生活,準(zhǔn)備從軍躍體育用品商店一次性購買若干個足球和籃球(每個足球的價(jià)格相同,每個籃球的價(jià)格相同),若購買3個足球和2個籃球共需310元,購買2個足球和5個籃球共需500元.
(1)購買一個足球、一個籃球各需多少元?
(2)根據(jù)同慶中學(xué)的實(shí)際情況,需從軍躍體育用品商店一次性購買足球和籃球共96個,要求購買足球和籃球的總費(fèi)用不超過5720元,這所中學(xué)最多可以購買多少個籃球?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在平面直角坐標(biāo)系xOy中,O是坐標(biāo)原點(diǎn),點(diǎn)A是函數(shù)y1= (x<0)圖象上一點(diǎn),AO的延長線交函數(shù)y2= (x>0,k<0)的y2圖象于點(diǎn)B,BC⊥x軸,若SABC= ,求函數(shù)y2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】位于合肥濱湖新區(qū)的渡江戰(zhàn)役紀(jì)念館,實(shí)物圖如圖1所示,示意圖如圖2所示.某學(xué)校數(shù)學(xué)興趣小組通過測量得知,紀(jì)念館外輪廓斜坡AB的坡度i=1: ,底基BC=50m,∠ACB=135°,求館頂A離地面BC的距離.(結(jié)果精確到0.1m,參考數(shù)據(jù): ≈1.41, ≈1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于二次函數(shù)y=x2﹣2mx﹣3,有下列結(jié)論: ①它的圖象與x軸有兩個交點(diǎn);
②如果當(dāng)x≤﹣1時(shí),y隨x的增大而減小,則m=﹣1;
③如果將它的圖象向左平移3個單位后過原點(diǎn),則m=1;
④如果當(dāng)x=2時(shí)的函數(shù)值與x=8時(shí)的函數(shù)值相等,則m=5.
其中一定正確的結(jié)論是 . (把你認(rèn)為正確結(jié)論的序號都填上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某班男生分成甲、乙兩組進(jìn)行引體向上的專項(xiàng)訓(xùn)練,已知甲組有6名男生,并對兩組男生訓(xùn)練前,后引體向上的個數(shù)進(jìn)行統(tǒng)計(jì)分析,得到乙組男生訓(xùn)練前,后引體向上的平均個數(shù)分別是6個和10個,及下面不完整的統(tǒng)計(jì)表和圖的統(tǒng)計(jì)圖.
甲組男生訓(xùn)練前、后引體向上個數(shù)統(tǒng)計(jì)表(單位:個)

甲組

男生A

男生B

男生C

男生D

男生E

男生F

平均個數(shù)

眾數(shù)

中位數(shù)

訓(xùn)練前

4

6

4

3

5

2

4

b

4

訓(xùn)練后

8

9

6

6

7

6

a

6

c


(1)根據(jù)以上信息,解答下列問題: a= , b= , c=;
(2)甲組訓(xùn)練后引體向上的平均個數(shù)比訓(xùn)練前增長了%;
(3)你認(rèn)為哪組訓(xùn)練效果好?并提供一個支持你觀點(diǎn)的理由;
(4)小華說他發(fā)現(xiàn)了一個錯誤:“乙組訓(xùn)練后引體向上個數(shù)不變的人數(shù)占到該組人數(shù)的50%,所以乙組的平均個數(shù)不可能提高4個之多.:你同意他的觀點(diǎn)嗎?說明理由.

查看答案和解析>>

同步練習(xí)冊答案