【題目】如圖,四邊形OBCD中的三個(gè)頂點(diǎn)在⊙O上,點(diǎn)A是⊙O上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)B、C、D重合).

(1)若點(diǎn)A在優(yōu)弧上,且圓心O在∠BAD的內(nèi)部,已知∠BOD=120°,則∠OBA+ODA= °.

(2)若四邊形OBCD為平行四邊形.

①當(dāng)圓心O在∠BAD的內(nèi)部時(shí),求∠OBA+ODA的度數(shù);

②當(dāng)圓心O在∠BAD的外部時(shí),請(qǐng)畫出圖形并直接寫出∠OBA與∠ODA的數(shù)量關(guān)系.

【答案】160°;(2①60°;②∠OBA=∠ODA+60°

【解析】

試題(1)連接BD,首先圓周角定理,求出∠BAD的度數(shù)是多少;然后根據(jù)三角形的內(nèi)角和定理,求出∠0BD、∠ODB的度數(shù)和是多少;最后在△ABD中,用180°減去∠BAD、∠0BD∠ODB的度數(shù)和,求出∠OBA+∠ODA等于多少即可.

2首先根據(jù)四邊形OBCD為平行四邊形,可得∠BOD=∠BCD∠OBC=∠ODC;然后根據(jù)∠BAD+∠BCD=180°∠BAD=∠B0D,求出∠B0D的度數(shù),進(jìn)而求出∠BAD的度數(shù);最后根據(jù)平行四邊形的性質(zhì),求出∠OBC、∠ODC的度數(shù),再根據(jù)∠ABC+∠ADC=180°,求出∠OBA+∠ODA等于多少即可.

首先根據(jù)四邊形OBCD為平行四邊形,可得∠BOD=∠BCD,∠OBC=∠ODC;然后根據(jù)∠BAD+∠BCD=180°,∠BAD=∠B0D,求出∠B0D的度數(shù),進(jìn)而求出∠BAD的度數(shù);最后根據(jù)OA=OD,OA=OB,判斷出∠OAD=∠ODA,∠OAB=∠OBA,進(jìn)而判斷出∠OBA=∠ODA+60°即可.

試題解析:解:(1)如圖1,連接BD,

∵∠BOD=120°,

∴∠BAD=120°÷2=60°,

∴∠0BD+∠ODB=180°﹣∠BOD=180°﹣120°=60°,

∴∠OBA+∠ODA=180°﹣∠0BD+∠ODB﹣∠BAD=180°﹣60°﹣60°=120°﹣60°=60°

故答案為:60

2如圖2,

四邊形OBCD為平行四邊形,

∴∠BOD=∠BCD,∠OBC=∠ODC,

∵∠BAD+∠BCD=180°,∠BAD=∠B0D

∠B0D+∠B0D=180°,

∴∠B0D=120°∠BAD=120°÷2=60°,

∴∠OBC=∠ODC=180°﹣120°=60°,

∵∠ABC+∠ADC=180°

∴∠OBA+∠ODA=180°﹣∠OBC+∠ODC=180°﹣60°+60°=180°﹣120°=60°;

如圖3

四邊形OBCD為平行四邊形,

∴∠BOD=∠BCD∠OBC=∠ODC,

∵∠BAD+∠BCD=180°,∠BAD=∠B0D,

∠B0D+∠B0D=180°,

∴∠B0D=120°,∠BAD=120°÷2=60°,

∴∠OAB=∠OAD+∠BAD=∠OAD+60°,

∵OA=ODOA=OB,

∴∠OAD=∠ODA,∠OAB=∠OBA

∴∠OBA=∠ODA+60°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形中,,點(diǎn)是邊上的動(dòng)點(diǎn)(含端點(diǎn),),連結(jié),以所在直線為對(duì)稱軸作點(diǎn)的對(duì)稱點(diǎn),連結(jié),,,,點(diǎn),分別是線段,,的中點(diǎn),連結(jié),

1)求證:四邊形是菱形;

2)若四邊形的面積為,求的長;

3)以其中兩邊為鄰邊構(gòu)造平行四邊形,當(dāng)所構(gòu)造的平行四邊形恰好是菱形時(shí),這時(shí)該菱形的面積是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC,CABC,AC=4,在AB邊上取一點(diǎn)D,使AD=BC,作AD的垂直平分線,交AC邊于點(diǎn)F,交以AB為直徑的⊙OG,H,設(shè)BC=x.

(1)求證:四邊形AGDH為菱形;

(2)EF=y(tǒng),求y關(guān)于x的函數(shù)關(guān)系式;

(3)連結(jié)OF,CG.

①若△AOF為等腰三角形,求⊙O的面積;

②若BC=3,則CG+9=______.(直接寫出答案).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖∠AABCC=45°,E、F分別是AB、BC的中點(diǎn),則下列結(jié)論,①EFBD,EFBD,③∠ADCBEF+BFE,ADDC,其中正確的是( 。

A. ①②③④ B. ①②③ C. ①②④ D. ②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,直線ykx+2與坐標(biāo)軸交于AB兩點(diǎn),OA=4,點(diǎn)Cx軸正半軸上的點(diǎn),且OCOB,過點(diǎn)CAB的垂線,交y軸于點(diǎn)D,拋物線yax2+bx+cAB、C三點(diǎn).

(1)求拋物線函數(shù)關(guān)系式;

(2)如圖②,點(diǎn)P是射線BA上一動(dòng)點(diǎn)(不與點(diǎn)B重合),連接OP,過點(diǎn)OOP的垂線交直線CD于點(diǎn)Q.求證:OPOQ;

(3)如圖③,在(2)的條件下,分別過P、Q兩點(diǎn)作x軸的垂線,分別交x軸于點(diǎn)E、F,交拋物線于點(diǎn)M、N,是否存在點(diǎn)P的位置,使以P、QM、N為頂點(diǎn)的四邊形為平行四邊形?如果存在,求出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊三角形ABC中,點(diǎn)PBC邊上一動(dòng)點(diǎn)(不與點(diǎn)B、C重合),連接AP,作射線PD,使∠APD=60°,PDAC于點(diǎn)D,已知AB=a,設(shè)CD=y,BP=x,則yx函數(shù)關(guān)系的大致圖象是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知經(jīng)過原點(diǎn)的拋物線軸的另一個(gè)交點(diǎn)為,現(xiàn)將拋物線向右平移個(gè)單位長度,所得拋物線與軸交于,與原拋物線交于點(diǎn),設(shè)的面積為,則用表示=__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)P(1,3),將線段OP繞原點(diǎn)O按順時(shí)針方向旋轉(zhuǎn)90°得到線段OP,則點(diǎn)P的坐標(biāo)是(

A. (﹣1,3) B. (1,﹣3) C. (3,﹣1) D. (3,1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB⊙O的直徑,銳角∠DAB的平分線AC⊙O于點(diǎn)C,作CD⊥AD,垂足為D,直線CDAB的延長線交于點(diǎn)E

1)求證:直線CD⊙O的切線;

2)當(dāng)AB2BE,且CE=時(shí),求AD的長.

查看答案和解析>>

同步練習(xí)冊(cè)答案