【題目】如圖①,直線ykx+2與坐標(biāo)軸交于A、B兩點(diǎn),OA=4,點(diǎn)Cx軸正半軸上的點(diǎn),且OCOB,過點(diǎn)CAB的垂線,交y軸于點(diǎn)D,拋物線yax2+bx+cA、BC三點(diǎn).

(1)求拋物線函數(shù)關(guān)系式;

(2)如圖②,點(diǎn)P是射線BA上一動點(diǎn)(不與點(diǎn)B重合),連接OP,過點(diǎn)OOP的垂線交直線CD于點(diǎn)Q.求證:OPOQ;

(3)如圖③,在(2)的條件下,分別過P、Q兩點(diǎn)作x軸的垂線,分別交x軸于點(diǎn)E、F,交拋物線于點(diǎn)M、N,是否存在點(diǎn)P的位置,使以P、Q、M、N為頂點(diǎn)的四邊形為平行四邊形?如果存在,求出點(diǎn)P的坐標(biāo);如果不存在,請說明理由.

【答案】(1) y=﹣x2x+2; (2)見解析;(3)見解析.

【解析】

(1)根據(jù)自變量與函數(shù)值的對應(yīng)關(guān)系可得A、B點(diǎn)坐標(biāo),再根據(jù)OB=OC可得C點(diǎn)坐標(biāo),進(jìn)而根據(jù)待定系數(shù)法可得拋物線解析式;(2)根據(jù)題意易得∠BAO=∠ODC,然后根據(jù)“ASA”證得△AOB≌△COD,進(jìn)而可得OA=OD,∠OAD=∠ODQ,再根據(jù)∠POQ=∠AOD=90°得到∠AOP=∠DOQ,因此可證△AOP≌△DOQ,即可證OP=OQ;(3)設(shè)點(diǎn)P橫坐標(biāo)為n,則點(diǎn)P坐標(biāo)為(n, n+2),點(diǎn)M的坐標(biāo)為(n, n2n+2),通過證△OPE≌△OQF(AAS)確定Q,N的坐標(biāo),由題意可得PM∥QN,故當(dāng)PM=QN時,以P、Q、M、N為頂點(diǎn)的四邊形為平行四邊形,PM點(diǎn)上方以及PM點(diǎn)下方兩種情況進(jìn)行討論,根據(jù)PM=QN求出點(diǎn)P坐標(biāo)即可.

解:(1)OA=4

∴點(diǎn)A(﹣4,0)

∵直線ykx+2與坐標(biāo)軸交于A、B兩點(diǎn),

∴點(diǎn)B(0,2),0=﹣4k+2

OB=2,k

∴直線解析式yx+2

OCOB=2

∴點(diǎn)C(2,0)

∵拋物線yax2+bx+cAB、C三點(diǎn).

解得:a=﹣,b=﹣,c=2

∴拋物線解析式:y=﹣x2x+2;

(2)CDAB

∴∠BAO+DCO=90°

又∵∠ODC+DCO=90°

∴∠BAOODCOBOCAOBCOD=90°

∴△AOB≌△CODASA

OAOD,OABODC

∴∠OAPODQ

∵∠POQ=90°,AOD=90°

∴∠AOPDOQOAODOAPODQ

∴△AOP≌△DOQASA

OPOQ

(3)設(shè)點(diǎn)P橫坐標(biāo)為n,則點(diǎn)P坐標(biāo)為(n, n+2),點(diǎn)M的坐標(biāo)為(n, n2n+2)

QFx軸,

∴∠FQO+QOF=90°,且∠QOF+POE=90°

∴∠FQOEOP

又∵∠OEPQFO=90°,OPOQ

∴△OPE≌△OQFAAS

OEQF,PEOF

∴點(diǎn)Q的坐標(biāo)為(n+2,﹣n),點(diǎn)N坐標(biāo)(n+2,﹣n2n).

由題意可得PMQN

當(dāng)PMQN時,以P、QM、N為頂點(diǎn)的四邊形為平行四邊形

當(dāng)點(diǎn)P位于點(diǎn)M上方時:如圖:

PM=(n+2)﹣(n2n+2)=n2+n

QN=(﹣n)﹣(﹣n2n)=n2n

n2nn2+n

解得:n=0(不合題意舍去),n=﹣

×(﹣)+2=﹣

∴點(diǎn)P坐標(biāo)為(﹣,﹣

當(dāng)點(diǎn)P位于點(diǎn)M下方時,如圖:

PM=(n2n+2)﹣(n+2)=﹣n2n

QN=(﹣n)﹣(﹣n2n)=n2n

n2nn2n

解得:n=0(不合題意舍去),n=﹣,

×(﹣)+2=

∴點(diǎn)P的坐標(biāo)為(

綜上所述:點(diǎn)P坐標(biāo)(﹣,﹣),(﹣

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】研究問題:一個不透明的盒中裝有若干個白球,怎樣估算白球的數(shù)量?

操作方法:先從盒中摸出8個球,畫上記號放回盒中,再進(jìn)行摸球?qū)嶒?yàn).摸球?qū)嶒?yàn)的要求:先攪拌均勻,每次摸出一個球,放回盒中,再繼續(xù).

統(tǒng)計結(jié)果如表:

摸球的次數(shù)n

100

200

300

500

800

1000

摸到有記號球的次數(shù)m

25

44

57

105

160

199

摸到有記號球的頻率

0.25

0.22

0.19

0.21

0.20

0.20

(1)請你完成上表中數(shù)據(jù),并估計摸到有記號球的概率是多少?

(2)估計盒中共有球多少個?沒有記號球有多少個?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一個可以自由轉(zhuǎn)動的轉(zhuǎn)盤中,指針位置固定,三個扇形的面積都相等,且分別標(biāo)有數(shù)字1,2,3.

(1)小明轉(zhuǎn)動轉(zhuǎn)盤一次,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動時,指針?biāo)干刃沃械臄?shù)字是奇數(shù)的概率為________;

(2)小明先轉(zhuǎn)動轉(zhuǎn)盤一次,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動時,記錄下指針?biāo)干刃沃械臄?shù)字;接著再轉(zhuǎn)動轉(zhuǎn)盤一次,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動時,再次記錄下指針?biāo)干刃沃械臄?shù)字,求這兩個數(shù)字之和是3的倍數(shù)的概率(用畫樹狀圖或列表等方法求解)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程:

(1)(x+8)2=36;

(2)x(5x+4)-(4+5x)=0;

(3)x2+3=3(x+1);

(4)2x2x-1=0(用配方法).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個不透明的袋子中,裝有除顏色外其余均相同的紅、藍(lán)兩種球,已知其中紅球有3個,且從中任意摸出一個是紅球的概率為0.75.

(1)根據(jù)題意,袋中有 個藍(lán)球.

(2)若第一次隨機(jī)摸出一球,不放回,再隨機(jī)摸出第二個球.請用畫樹狀圖或列表法求“摸到兩球中至少一個球?yàn)樗{(lán)球(記為事件A)”的概率P(A).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形OBCD中的三個頂點(diǎn)在⊙O上,點(diǎn)A是⊙O上的一個動點(diǎn)(不與點(diǎn)B、C、D重合).

(1)若點(diǎn)A在優(yōu)弧上,且圓心O在∠BAD的內(nèi)部,已知∠BOD=120°,則∠OBA+ODA= °.

(2)若四邊形OBCD為平行四邊形.

①當(dāng)圓心O在∠BAD的內(nèi)部時,求∠OBA+ODA的度數(shù);

②當(dāng)圓心O在∠BAD的外部時,請畫出圖形并直接寫出∠OBA與∠ODA的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某政府在廣場上樹立了如圖所示的宣傳牌,數(shù)學(xué)興趣小組的同學(xué)想利用所學(xué)的知識測量宣傳牌的高度AB,在D處測得點(diǎn)A、B的仰角分別為38°、21°,已知CD=20m,點(diǎn)A、B、C在一條直線上,AC⊥DC,求宣傳牌的高度AB(sin21°≈0.36,cos21°≈0.93,tan21°≈0.38,sin38°≈0.62,cos38°≈0.78,tan38°≈0.79,結(jié)果精確到1米)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)是坐標(biāo)原點(diǎn),四邊形是菱形,點(diǎn)的坐標(biāo)為,點(diǎn)軸的負(fù)半軸上,直線軸于點(diǎn),邊交軸于點(diǎn)

1)如圖1,求直線的解析式;

2)如圖2,連接,動點(diǎn)從點(diǎn)出發(fā),沿線段方向以1個單位/秒的速度向終點(diǎn)勻速運(yùn)動,設(shè)的面積為),點(diǎn)的運(yùn)動時間為秒,求之間的函數(shù)關(guān)系式,并直接寫出自變量的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個邊長為4的等邊三角形ABC的高與⊙O的直徑相等,如圖放置,⊙OBC相切于點(diǎn)C,⊙OAC相交于點(diǎn)E,則CE的長是:

A. B. C. 2 D. 3

查看答案和解析>>

同步練習(xí)冊答案